4.已知復(fù)數(shù)z的共軛復(fù)數(shù)記為$\overline z,i$為虛數(shù)單位,若(1+2i)$\overline z$=4-3i,復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:若$(1+2i)\overline z=4-3i$,∴$\overline{z}$=$\frac{4-3i}{1+2i}$=$\frac{(4-3i)(1-2i)}{(1+2i)(1-2i)}$=$\frac{-2-11i}{5}$
復(fù)數(shù)z=$-\frac{2}{5}$+$\frac{11}{5}$i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)($-\frac{2}{5}$,$\frac{11}{5}$)位于第二象限.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且滿足a2017+a2018=π,$_{20}^{2}$=4,則tan$\frac{{a}_{2}+{a}_{4033}}{_{1}_{39}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.集合A={1,2,a},B={2,3},若B?A,則實(shí)數(shù)a的值是( 。
A.1B.2C.3D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.$若f(x)=\left\{{\begin{array}{l}{\sqrt{x},x≥0}\\{1+{x^2},x<0}\end{array}}\right.$,則f′(1)•f′(-1)=(  )
A.-2B.-3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,集合B={x|-3≤x≤3}
(1)求A∩B和A∪B;   
(2)若C={x|4x+p<0},C⊆A,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知3sin$\frac{x}{2}-cos\frac{x}{2}$=0.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,曲線Γ由曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和曲線C2::$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,y≤0)組成,其中點(diǎn)F1,F(xiàn)2為曲線C1所在圓錐曲線的焦點(diǎn),點(diǎn)F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點(diǎn),已知F2(2,0)F4(6,0).
(1)求曲線C1和C2的方程
(2)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點(diǎn)A,B,求證:弦AB的中點(diǎn)M必在曲線C2的另一條漸近線上.
(3)若直線l1過(guò)點(diǎn)F4交曲線C1于點(diǎn)C,D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1,設(shè)棱長(zhǎng)為a,過(guò)BD且與直線AC1平行的截面面積是( 。
A.$\frac{a^2}{2}$B.$\frac{{\sqrt{6}}}{4}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.滿足{1,2}∪M={1,2,3}的所有集合M有4個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案