17.若2x=10,則x-log25的值為1.

分析 根據(jù)對(duì)數(shù)的定義和對(duì)數(shù)的運(yùn)算性質(zhì)即可求出.

解答 解:2x=10,
則x=log210
則x-log25=log210-log25=log22=1,
故答案為:1

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的定義和對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在棱長為1的正方體ABCD-A1B1C1D1中,AC∩BD=O,E是線段B1C(含端點(diǎn))上的一動(dòng)點(diǎn),則
①OE⊥BD1;   
②OE∥面A1C1D;
③三棱錐A1-BDE的體積為定值;
④OE與A1C1所成的最大角為90°.
上述命題中正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a,b≠0,則“a>b”是“$\frac{1}{a}<\frac{1}$”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)xy<0,則$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=(2a-1)x-$\frac{1}{2}$cos2x-a(sinx+cosx)在[0,$\frac{π}{2}$]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,$\frac{1}{3}$]B.[$\frac{1}{3}$,1]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C的方程為(x-2)2+y2=4,直線l的方程為x+$\sqrt{3}$y-12=0,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)分別寫出曲線C與直線l的極坐標(biāo)方程;
(Ⅱ)在極坐標(biāo)中,極角為θ(θ∈(0,$\frac{π}{2}$))的射線m與曲線C,直線l分別交于A、B兩點(diǎn)(A異于極點(diǎn)O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)過點(diǎn)$({1\;,\;\frac{3}{2}})$,兩個(gè)焦點(diǎn)為F1(-1,0)和F2(1,0).圓O的方程為x2+y2=a2
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過F1且斜率為k(k>0)的動(dòng)直線l與橢圓C交于A、B兩點(diǎn),與圓O交于P、Q兩點(diǎn)(點(diǎn)A、P在x軸上方),當(dāng)|AF2|,|BF2|,|AB|成等差數(shù)列時(shí),求弦PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l:x+$\sqrt{2}y=4\sqrt{2}$與橢圓C:mx2+ny2=1(n>m>0)有且只有一個(gè)公共點(diǎn)$M[{2\sqrt{2},2}]$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點(diǎn)分別為A,B,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)Q滿足QB⊥AB,連接AQ交橢圓于點(diǎn)P,求$\overrightarrow{OQ}•\overrightarrow{OP}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若命題“?x∈(0,+∞),x+$\frac{1}{x}$≥m”是假命題,則實(shí)數(shù)m的取值范圍是(2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案