17.以(2,-1)為圓心且與直線x-y+1=0相切的圓的方程為(  )
A.(x-2)2+(y+1)2=8B.(x-2)2+(y+1)2=4C.(x+2)2+(y-1)2=8D.(x+2)2+(y-1)2=4

分析 直線與圓相切,則圓心到直線的距離即為圓的半徑.利用點(diǎn)到直線的距離公式求出半徑即可得到圓的方程.

解答 解:圓心(2,-1)到直線x-y+1=0的距離為d=$\frac{|2+1+1|}{\sqrt{2}}$=2$\sqrt{2}$,
∵圓與直線直線x-y+1=0相切,
∴半徑r=2$\sqrt{2}$.
∴所求圓的方程為(x-2)2+(y+1)2=8.
故選A.

點(diǎn)評 本題考查直線與圓相切的性質(zhì),圓的標(biāo)準(zhǔn)方程等知識的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{k-{2^{-x}}}}{{{2^{-x+1}}+2}}$是奇函數(shù).
(1)求k的值;
(2)判斷并證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.集合P={x|x>1},Q={x|f(x)=ln(2-x)},則P∩Q=( 。
A.[1,2)B.(1,2]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在數(shù)列1,2,$\sqrt{7},\sqrt{10},\sqrt{13}$,…中,2$\sqrt{19}$是這個(gè)數(shù)列的( 。
A.第16項(xiàng)B.第24項(xiàng)C.第26項(xiàng)D.第28項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲、乙兩組各有三名同學(xué),她們在一次測試中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中隨機(jī)選取一名同學(xué),則這兩名同學(xué)的成績之差的絕對值不超過3的概率是$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若直線ax+(2a-3)y=0的傾斜角為45°,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知m、l是兩條不同的直線,α、β是兩個(gè)不同的平面,且m⊥α,l∥β,則下列說法正確的是( 。
A.若m∥l,則α∥βB.若α⊥β,則m∥lC.若m⊥l,則α∥βD.若α∥β,則m⊥l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上函數(shù)f(x)滿足f(-x)+f(x)=0,且當(dāng)x>0時(shí),f(x)=1+ax,若f(-1)=-$\frac{3}{2}$,則實(shí)數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是某幾何體的三視圖,則該幾何體的表面積為( 。
A.48B.57C.63D.68

查看答案和解析>>

同步練習(xí)冊答案