已知角α的終邊與單位圓交于點P(m,n),且n=2m(m≠0)那么sin2α的值是( 。
A、-
4
5
B、
4
5
C、-
3
5
D、
3
5
考點:任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:利用任意角的三角函數(shù)的定義求出sinα和 cosα的值,再利用二倍角公式求得 sin2α的值.
解答: 解:由題意可得 x=m,y=n=2m,r=
x2+y2
=
5
|m|.
∴sinα=
y
r
=
2m
5
|m|
,cosα=
x
r
=
m
5
|m|

∴sin2α=2sinαcosα=
4
5
,
故選:B.
點評:本題主要考查任意角的三角函數(shù)的定義,二倍角的正弦公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
sin(x+π)
cos(π-x)
,則下列結論中正確的是( 。
A、f(x)的最小正周期是2π
B、f(x)在[4,5]上單調(diào)遞增
C、f(x)的圖象關于x=
π
2
對稱
D、f(x)的圖象關于點(
2
,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U={3,4,5,6},集合A={3,5,6},B={4,5,6},則∁UA∩B=(  )
A、{4,7}B、{3,6}
C、{4}D、{7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z滿足z•(i-1)=2i(其中i為虛數(shù)單位),則z等于( 。
A、1-iB、1+i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中的真命題是( 。
A、?x∈R,x2>0
B、?x∈R,x+
1
x
≥2
C、?x0∈R,sinx0+cosx0=2
D、?x0∈R,ln x0>(
1
2
x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
1
x
與x=1,x=2以及x軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2013年4月20日8點02分四川省雅安市蘆山縣(北緯30.3度,東經(jīng)103.0度)
發(fā)生7.0級地震,此次地震中,受災面積大,傷亡慘重,醫(yī)療隊到達后,都會選擇一個合理的位置,使傷員能在最短的時間內(nèi)得到救治.醫(yī)療隊首先到達O點,設有四個鄉(xiāng)鎮(zhèn),分別位于一個矩形ABCD的四個頂點A,B,C,D,為了救災及災后實際重建需要.需要修建三條小路OE、EF和OF,要求O是AB的中點,點E在邊BC上,點F在邊AD上,AB=50千米,BC=25
3
千米且∠EOF=90°,如圖所示.
(1)設∠BOE=α,試將△OEF的周長表示成α的函數(shù)關系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每千米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)定義域為(-1,1),且為增函數(shù),若f(a)<f(1-a),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-2x2+ax+b的圖象在點P(3,f(3)),處的切線方程為y=3x-5.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設g(x)=f(x)+
m
x-2

①若g(x)是[3,+∞)上的增函數(shù),求實數(shù)m的最大值;
②是否存在點Q,使得過點Q的直線若能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等.若存在,求出點Q坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案