我們把由半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x<0)
合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2是“果圓”與x,y軸的交點(diǎn),若△F0F1F2是邊長為1的等邊三角,則a,b的值分別為(  )
A.
7
2
,1
B.
3
,1
C.5,3D.5,4
精英家教網(wǎng)
OF2=
b2-c2
=
1
2
,OF0=c=
3
OF2=
3
2
,∴b=1,
a2=b2+c2=1+
3
4
=
7
4
,得a=
7
2
,即a=
7
2
,b=1.
故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們把由半橢圓
x2
a2
+
y2
b2
=1
(x≥0)與半橢圓
y2
b2
+
x2
c2
=1
(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),M是線段A1A2的中點(diǎn).
(1)若△F0F1F2是邊長為1的等邊三角形,求該“果圓”的方程;
(2)設(shè)P是“果圓”的半橢圓
y2
b2
+
x2
c2
=1
(x≤0)上任意一點(diǎn).求證:當(dāng)|PM|取得最小值時,P在點(diǎn)B1,B2或A1處;
(3)若P是“果圓”上任意一點(diǎn),求|PM|取得最小值時點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們把由半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x<0)
合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2是“果圓”與x,y軸的交點(diǎn),若△F0F1F2是邊長為1的等邊三角,則a,b的值分別為(  )
A、
7
2
,1
B、
3
,1
C、5,3
D、5,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀以下材料,然后解決問題:
①設(shè)橢圓的長半軸長為m短半軸長為b,則橢圓的面積為πab
②我們把由半橢圓C1
y2
b2
+
x2
c2
=1 (x≤0)與半橢圓C2
x2
a2
+
y2
b2
=1 (x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),若△F0F1F2是邊長為1的等邊三角形,則上述“果圓”的面積為:
3
+
7
4
π
3
+
7
4
π

查看答案和解析>>

同步練習(xí)冊答案