已知m、n為正整數(shù),f(x)=(1+x)m+(1+x)n的展開式中x的系數(shù)為19,求f(x)展開式中x2項(xiàng)系數(shù)的最小值.

答案:
解析:

  ∵f(x)=2+(m+n)x+()x2+…,∴m+n=19.

  [m2+n2-(m+n)]=

  當(dāng)且僅當(dāng)(m-n)2達(dá)到最小值時(shí),達(dá)最小值.

  ∵m+n=19

  ∴m、n之差的絕對(duì)值達(dá)到最小值時(shí),m=10,n=9或m=9,n=10時(shí),|m-n|的最小值為1.

  ∴f(x)展開式中x2項(xiàng)的系數(shù)最小值為=81.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為正整數(shù),3m+n=20,則m>n的概率為
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(湖北理21)(本小題滿分14分)

已知mn為正整數(shù).

(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx

(Ⅱ)對(duì)于n≥6,已知,求證,m=1,1,2…,n;

(Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0110 期末題 題型:解答題

已知m,n為正整數(shù),
(1)證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(2)對(duì)于n≥6,已知,求證,m=1,2,3,…,n;
(3)求出滿足等式3n+4n+…+(n+2)n=(n+3)n的所有正整數(shù)n。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省蚌埠市懷遠(yuǎn)一中高三(下)第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知,求證,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

同步練習(xí)冊(cè)答案