【題目】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點(diǎn),以為焦點(diǎn),離心率的橢圓與拋物線的一個(gè)交點(diǎn)為;自引直線交拋物線于兩個(gè)不同的點(diǎn),設(shè).

(1)求拋物線的方程橢圓的方程;

(2)若,求的取值范圍.

【答案】1, 2

【解析】分析:(1)根據(jù)已知分別列方程組求標(biāo)準(zhǔn)方程中的待定系數(shù)即可. (2)先利用弦長(zhǎng)公式計(jì)算出

,再求函數(shù)的值域,即得的取值范圍.

詳解: (1)設(shè)橢圓的標(biāo)準(zhǔn)方程為

由題意得,解得

∴橢圓的方程為

∴點(diǎn)的坐標(biāo)為,

,∴拋物線的方程是

(2)由題意得直線的斜率存在,設(shè)其方程為,

消去整理得*

∵直線與拋物線交于兩點(diǎn),

,

設(shè),①,,

,

,③

由①③消去.

,即 ,將代入上式得,

,

上單調(diào)遞減,

,即,

,即的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市的街道是相互垂直或平行的,如果按照街道垂直和平行的方向建立平面直角坐標(biāo)系,對(duì)兩點(diǎn),用以下方式定義兩點(diǎn)間距離:.如圖,學(xué)校在點(diǎn)處,商店在點(diǎn),小明家在點(diǎn)處,某日放學(xué)后,小明沿道路從學(xué)校勻速步行到商店,已知小明的速度是每分鐘1個(gè)單位長(zhǎng)度,設(shè)步行分鐘時(shí),小明與家的距離為個(gè)單位長(zhǎng)度.

1)求關(guān)于的解析式;

2)做出中函數(shù)的圖象,并求小明離家的距離不大于7個(gè)單位長(zhǎng)度的總時(shí)長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地需要修建一條大型輸油管道通過(guò)120公里寬的沙漠地帶,該段輸油管道兩端的輸油站已建好,余下工程只需要在該段兩端已建好的輸油站之間鋪設(shè)輸油管道和等距離修建增壓站(又稱泵站)。經(jīng)預(yù)算,修建一個(gè)增壓站的工程費(fèi)用為400萬(wàn)元,鋪設(shè)距離為公里的相鄰兩增壓站之間的輸油管道費(fèi)用為萬(wàn)元。設(shè)余下工程的總費(fèi)用為萬(wàn)元。

(I)試將表示成關(guān)于的函數(shù);

(II)需要修建多少個(gè)増壓站才能使總費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,若對(duì)于分別為某個(gè)三角形的邊長(zhǎng),則稱為“三角形函數(shù)”.給出下列四個(gè)函數(shù):

;②;③;④.其中為“三角形函數(shù)”的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,平面平面,平面平面,上任意一點(diǎn),為菱形對(duì)角線的交點(diǎn)。

(1)證明:平面平面;

(2)若,當(dāng)四棱錐的體積被平面分成3:1兩部分時(shí),若二面角的大小為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是網(wǎng)格工作者經(jīng)常用來(lái)解釋網(wǎng)絡(luò)運(yùn)作的蛇形模型:數(shù)字1出現(xiàn)在第1行;數(shù)字2,3出現(xiàn)在第2行,數(shù)字6,5,4(從左至右)出現(xiàn)在第3行;數(shù)字7,8,9,10出現(xiàn)在第4行;依此類推,若數(shù)字195在第m行從左至右算第n個(gè)數(shù)字,則_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將命題“一組對(duì)邊平行且相等的四邊形是平行四邊形”改寫(xiě)成“若,則”的形式,并寫(xiě)出它的逆命題、否命題和逆否命題,同時(shí)判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)由余弦曲線怎樣得到函數(shù)的圖像?

(2)的圖像怎樣得到函數(shù)的圖像?

(3)求函數(shù)的單調(diào)區(qū)間.

(4)判斷函數(shù)的奇偶性.

查看答案和解析>>

同步練習(xí)冊(cè)答案