【題目】已知函數(shù).

(Ⅰ)解不等式: ;

(Ⅱ)已知,若對(duì)任意的,不等式恒成立,求正數(shù)的取值范圍.

【答案】(I);(Ⅱ).

【解析】

(Ⅰ)由題意得不等式為,然后根據(jù)分類討論的方法,去掉絕對(duì)值后解不等式組即可.(Ⅱ)根據(jù)題意先得到,故由題意得恒成立,分類討論去掉絕對(duì)值后可得所求范圍.

(Ⅰ)由題意得不等式為

當(dāng)時(shí),原不等式化為,解得,不合題意;

當(dāng)時(shí),原不等式化為,解得,∴;

當(dāng)時(shí),原不等式化為,解得,∴

綜上可得

∴原不等式的解集為

(Ⅱ)∵

.

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,

由題意得恒成立,

當(dāng)時(shí),可得恒成立,即恒成立,

,可得上式顯然成立;

當(dāng)時(shí),可得恒成立,即恒成立,

,∴;

當(dāng)時(shí),可得恒成立,即恒成立,

綜上可得

∴故的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)、、分別是正方體的棱,,的中點(diǎn),則下列命題中的真命題是__________(寫出所有真命題的序號(hào)).

①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多可以四個(gè)面都是直角三角形;

②點(diǎn)在直線上運(yùn)動(dòng)時(shí),總有;

③點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積是定值;

④若是正方體的面,(含邊界)內(nèi)一動(dòng)點(diǎn),且點(diǎn)到點(diǎn)的距離相等,則點(diǎn)的軌跡是一條線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形與正所在平面互相垂直,平面,,.

(1)證明:平面

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是衡量空氣污染程度的一個(gè)指標(biāo),為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機(jī)抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、,分別稱為一級(jí)、二級(jí)、三級(jí)和四級(jí),統(tǒng)計(jì)時(shí)用頻率估計(jì)概率 .

(1)根據(jù)年的數(shù)據(jù)估計(jì)該市在年中空氣質(zhì)量為一級(jí)的天數(shù);

(2)如果市對(duì)環(huán)境進(jìn)行治理,經(jīng)治理后,每天近似滿足正態(tài)分布,求經(jīng)過(guò)治理后的值的均值下降率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,若為拋物線上第一象限的一動(dòng)點(diǎn),過(guò)的垂線交準(zhǔn)線于點(diǎn),交拋物線于兩點(diǎn).

(Ⅰ)求證:直線與拋物線相切;

(Ⅱ)若點(diǎn)滿足,求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)要完成下列三項(xiàng)抽樣調(diào)查:罐奶粉中抽取罐進(jìn)行食品安全衛(wèi)生檢查;高二年級(jí)有名學(xué)生,為調(diào)查學(xué)生的學(xué)習(xí)情況抽取一個(gè)容量為的樣本;從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進(jìn)行消費(fèi)水平調(diào)查.以下各調(diào)查方法較為合理的是(

A.系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣,分層抽樣

B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣,系統(tǒng)抽樣

C.分層抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣,分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項(xiàng)目.為預(yù)估今年7月份游客購(gòu)買水果的情況,隨機(jī)抽樣統(tǒng)計(jì)了去年7月份100名游客的購(gòu)買金額.分組如下:,, ,得到如圖所示的頻率分布直方圖:

(1)請(qǐng)用抽樣的數(shù)據(jù)估計(jì)今年7月份游客人均購(gòu)買水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表).

(2)若把去年7月份購(gòu)買水果不低于80元的游客,稱為“水果達(dá)人”. 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為“水果達(dá)人”與性別有關(guān)系?

水果達(dá)人

非水果達(dá)人

合計(jì)

10

30

合計(jì)

(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過(guò)80元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.若每斤水果10元,你打算購(gòu)買12斤水果,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

附:參考公式和數(shù)據(jù):.臨界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見(jiàn)于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫(huà),為了進(jìn)行合理定價(jià)先進(jìn)性試銷售,其單價(jià)(元)與銷量(個(gè))相關(guān)數(shù)據(jù)如下表:

(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;

(2)若該新造型糖畫(huà)每個(gè)的成本為元,要使得進(jìn)入售賣時(shí)利潤(rùn)最大,請(qǐng)利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計(jì)計(jì)算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):

車間

數(shù)量

50

150

100

(1)求這6件樣品中來(lái)自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來(lái)自相同車間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案