點(diǎn)O是△ABC所在平面上一點(diǎn),若
OA
+
OB
+2
OC
=
0
,則△AOC的面積與△ABC的面積之比為( 。
A、
1
3
B、
2
3
C、
1
4
D、
1
2
分析:根據(jù)題意,以O(shè)A、OB為一組鄰邊作?OADB,連接OD與AB交于點(diǎn)E,易得AB的中點(diǎn)為E,由平行四邊形法則易得
OA
+
OB
=2
OE

將已知的向量等式變形,可得
OE
=-
OC
,分析可得O的AB邊的中線OE上,且O為OE的中點(diǎn);依次分析△AOC的面積與△ADC的面積之比以及△ADC的面積與△ABC的面積之比,即可得答案.
解答:精英家教網(wǎng)解:根據(jù)題意,以O(shè)A、OB為一組鄰邊作?OADB,連接OD與AB交于點(diǎn)E,
由平行四邊形的性質(zhì)易得AB的中點(diǎn)為E,
由平行四邊形法則易得
OA
+
OB
=2
OE

又由
OA
+
OB
+2
OC
=
0
,可得
OA
+
OB
=-2
OC

OE
=-
OC
,
則O的AB邊的中線OE上,且O為OE的中點(diǎn),
O為OE的中點(diǎn),△AOC的面積與△AEC的面積之比為1:2,
E為AB的中點(diǎn),△AEC的面積與△ABC的面積之比為1:2,
則△AOC的面積與△ABC的面積之比為1:4,
故選C.
點(diǎn)評(píng):本題考查向量的運(yùn)算法則:關(guān)鍵是分析出O為AE的中點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)O在△ABC所在平面上,若
OA
OB
=
OB
OC
=
OC
OA
,則點(diǎn)O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省攀枝花市高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題

下列命題:①若共線,則存在唯一的實(shí)數(shù),使=;

②空間中,向量、共面,則它們所在直線也共面;

③P是△ABC所在平面外一點(diǎn),O是點(diǎn)P在平面上的射影.若PA 、PB、PC兩兩垂直,則O是△ABC垂心.

④若三點(diǎn)不共線,是平面外一點(diǎn).,則點(diǎn)一定在平面上,且在△ABC內(nèi)部,上述命題中正確的命題是                  

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省哈爾濱六中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

點(diǎn)O在△ABC所在平面上,若,則點(diǎn)O是△ABC的( )
A.三條中線交點(diǎn)
B.三條高線交點(diǎn)
C.三條邊的中垂線交點(diǎn)
D.三條角分線交點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案