【題目】如圖,已知斜三棱柱ABC﹣A1B1C1的底面是正三角形,點(diǎn)M、N分別是B1C1和A1B1的中點(diǎn),AA1=AB=BM=2,∠A1AB=60°.
(1)求證:BN⊥平面A1B1C1;
(2)求二面角A1﹣AB﹣M的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)要證平面,只需證明,;
(2)建立坐標(biāo)系,求出平面的一個(gè)法向量,平面的一個(gè)法向量,利用向量的夾角公式,即可求二面角的余弦值.
(1)證明:連接MN,A1B,
∵側(cè)面是ABB1A1菱形,且∠A1AB=60°,∴△A1BB1為正三角形.
∵N是A1B1的中點(diǎn),∴BN⊥A1B1,
∵AA1=AB=BM=2,∴BN=,MN=1,∴BN2+MN2=BM2,∴BN⊥MN,
∵A1B1∩MN=N,∴BN⊥平面A1B1C1;
(2)取AB的中點(diǎn)E,連接A1E,則A1E∥BN,由(1)知A1E⊥平面ABC,
以E為坐標(biāo)原點(diǎn),建立如圖所示的坐標(biāo)系,則E(0,0,0),A(﹣1,0,0),B(1,0,0),C(0,,0),A(0,0,),B1(2,0,),
設(shè)M(x,y,z),由得,
∴,
∴,
平面ABA1的一個(gè)法向量為(0,1,0),
設(shè)平面MAB的法向量(x,y,z),則 ,
∴(0,﹣2,1),
∴ ,
∴二面角A1﹣AB﹣M的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長(zhǎng)為的正方體的頂點(diǎn)在平面內(nèi),三條棱,,都在平面的同側(cè). 若頂點(diǎn),到平面的距離分別為,;
(1)求平面與平面所成銳二面角的余弦值;
(2)求頂點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的離心率為2,左右焦點(diǎn)分別為,,過右焦點(diǎn)且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),且的周長(zhǎng)為.
(1)求雙曲線C的方程;
(2)已知直線,點(diǎn)P是雙曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別是圓心在原點(diǎn),半徑為和的圓上的動(dòng)點(diǎn).動(dòng)點(diǎn)從初始位置開始,按逆時(shí)針方向以角速度作圓周運(yùn)動(dòng),同時(shí)點(diǎn)從初始位置開始,按順時(shí)針方向以角速度作圓周運(yùn)動(dòng).記時(shí)刻,點(diǎn)的縱坐標(biāo)分別為.
(Ⅰ)求時(shí)刻,兩點(diǎn)間的距離;
(Ⅱ)求關(guān)于時(shí)間的函數(shù)關(guān)系式,并求當(dāng)時(shí),這個(gè)函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動(dòng)點(diǎn),點(diǎn)在射線上,且滿足.
(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(Ⅱ)設(shè)與軸交于點(diǎn),過點(diǎn)且傾斜角為的直線與相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.
(1)求“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率;
(2)求“抽取的卡片上的數(shù)字滿足|a﹣b|<c”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AC=CD=AB=1, ,sin∠BCD=.
(1)求BC邊的長(zhǎng);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正數(shù)數(shù)列、滿足:≥,且對(duì)一切k≥2,k,是與的等差中項(xiàng),是與的等比中項(xiàng).
(1)若,,求,的值;
(2)求證:是等差數(shù)列的充要條件是為常數(shù)數(shù)列;
(3)記,當(dāng)n≥2(n)時(shí),指出與的大小關(guān)系并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com