【題目】設(shè)函數(shù) ,若曲線(xiàn) 上存在(x0 , y0),使得f(f(y0))=y0成立,則實(shí)數(shù)m的取值范圍為(
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]

【答案】D
【解析】解:∵﹣1≤cosx≤1,∴ 的最大值為e,最小值為1,∴1≤y0≤e, 顯然f(x)= 是增函數(shù),
(i)若f(y0)>y0 , 則f(f(y0))>f(y0)>y0 , 與f(f(y0))=y0矛盾;
(ii)若f(y0)<y0 , 則f(f(y0))<f(y0)<y0 , 與f(f(y0))=y0矛盾;
∴f(y0)=y0 ,
∴y0為方程f(x)=x的解,即方程f(x)=x在[1,e]上有解,
由f(x)=x得m=x2﹣x﹣lnx,
令g(x)=x2﹣x﹣lnx,x∈[1,e],
則g′(x)=2x﹣1﹣ = = ,
∴當(dāng)x∈[1,e]時(shí),g′(x)≥0,
∴g(x)在[1,e]上單調(diào)遞增,
∴gmin(x)=g(1)=0,gmax(x)=g(e)=e2﹣e﹣1,
∴0≤m≤e2﹣e﹣1.
故選D.
求出y0的范圍,證明f(y0)=y0 , 得出f(x)=x在[1,e]上有解,再分離參數(shù),利用函數(shù)單調(diào)性求出m的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M是滿(mǎn)足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在使得成立。

(1)函數(shù)是否屬于集合M?請(qǐng)說(shuō)明理由;

(2)函數(shù)M,a的取值范圍;

(3)設(shè)函數(shù),證明:函數(shù)M。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,直線(xiàn)x+y+1=0與橢圓交于P、Q兩點(diǎn),且OPOQ,求該橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長(zhǎng)度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l:

1證明直線(xiàn)l經(jīng)過(guò)定點(diǎn)并求此點(diǎn)的坐標(biāo);

2若直線(xiàn)l不經(jīng)過(guò)第四象限,求k的取值范圍;

3若直線(xiàn)lx軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.

(1)求證:平面平面

(2)若過(guò)直線(xiàn)的一個(gè)平面與線(xiàn)段分別相交于點(diǎn) (點(diǎn)與點(diǎn)均不重合),求證: ;

(3)判斷線(xiàn)段上是否存在一點(diǎn),使得平面平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱臺(tái)ABC﹣FED中,△DEF與△ABC分別是棱長(zhǎng)為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點(diǎn),
(Ⅰ)λ為何值時(shí),MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線(xiàn)AN與平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,BC邊上的高所在直線(xiàn)的方程為x2y10,A的平分線(xiàn)所在的直線(xiàn)方程為y0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的頂點(diǎn)邊上的中線(xiàn)所在的直線(xiàn)方程為,邊上的高所在直線(xiàn)的方程為

)求的頂點(diǎn)、的坐標(biāo).

若圓經(jīng)過(guò)不同的三點(diǎn)、,且斜率為的直線(xiàn)與圓相切于點(diǎn),求圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案