【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點(diǎn)M為線段PA的中點(diǎn),求直線PB與平面AMN所成角的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,過(guò)點(diǎn)向圓引兩條切線,,切點(diǎn)為,,若點(diǎn)的坐標(biāo)為,則直線的方程為____________;若為直線上一動(dòng)點(diǎn),則直線經(jīng)過(guò)定點(diǎn)__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上動(dòng)點(diǎn)與兩個(gè)定點(diǎn), ,且.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中軌跡為,過(guò)點(diǎn)的直線被所截得的線段長(zhǎng)度為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、是雙曲線的兩個(gè)焦點(diǎn),一條直線與雙曲線的右支相切,且分別交兩條漸近線于A、B.又設(shè)O為坐標(biāo)原點(diǎn),求證: (1); ⑵、、A、B四點(diǎn)在同一個(gè)圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)是在軸上的投影,且.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)求過(guò)點(diǎn)(1,0),傾斜角為的直線被所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上單調(diào),且函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項(xiàng)的和為( )
A. 300B. 100C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知互不重合的直線,互不重合的平面,給出下列四個(gè)命題,正確命題的個(gè)數(shù)是
①若 , ,,則
②若,,則
③若,,,則
④若 , ,則//
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①“”是“存在,使得成立”的充分不必要條件;②“”是“存在,使得成立”的必要條件;③“”是“不等式對(duì)一切恒成立”的充要條件. 其中所以真命題的序號(hào)是
A.③B.②③C.①②D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)在橢圓 上,過(guò)點(diǎn)的直線的方程為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若直線與軸、軸分別相交于兩點(diǎn),試求面積的最小值;
(Ⅲ)設(shè)橢圓的左、右焦點(diǎn)分別為,,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱(chēng),求證:點(diǎn)三點(diǎn)共線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com