已知函數(shù)f(x)=x|x-a|+bx,當(dāng)a=2時(shí),f(x)在R上單調(diào)遞增,求b的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:將函數(shù)寫成分段函數(shù)的形式,再討論各段的情況,注意二次函數(shù)的對(duì)稱軸和區(qū)間的關(guān)系,再求交集即可.
解答: 解:f(x)=x|x-2|+bx
=
x2+(b-2)x,x≥2
(2+b)x-x2,x<2
,
由于f(x)在R上單調(diào)遞增,則
當(dāng)x≥2時(shí),對(duì)稱軸x=
2-b
2
,即有
2-b
2
≤2,解得,b≥-2,
當(dāng)x<2時(shí),對(duì)稱軸x=
2+b
2
,即有
2+b
2
≥2
解得,b≥2,
則有b≥2.
故b的取值范圍是[2,+∞).
點(diǎn)評(píng):本題考查絕對(duì)值函數(shù)轉(zhuǎn)化為分段函數(shù),考查函數(shù)的單調(diào)性的運(yùn)用,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈(-1,1]時(shí)f(x)=|x|,則函數(shù)f(x)的圖象與函數(shù)y=log2|x|的圖象的交點(diǎn)的個(gè)數(shù)是( 。
A、2B、3C、4D、多于4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinθ+cosθ=
2
,則sin4θ+cos4θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
(1)
1
sin10°
-
3
cos10°

(2)sin40°(tan10°-
3

(3)tan70°cos10°(
3
tan20°-1)
(4)sin50°(1+
3
tan10°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性.
(1)f(x)=|sinx|;
(2)f(x)=sinxcosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PD=a,PA=PC=
2
a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求證:∠PCD為二面角P-BC-D的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過兩直線2x-3y+1=0和3x+4y-2=0的交點(diǎn)且與直線3x-2y+4=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(a),已知,拋物線y=-ax2+2ax+m與x軸交于A(-1,0),B兩點(diǎn),與y軸負(fù)半軸交于C點(diǎn),且OB=OC.
(1)求拋物線的解析式.
(2)點(diǎn)M在第四象限的拋物線圖象上,且S△ACM=
5
4
S△BAM,求M點(diǎn)的坐標(biāo).
(3)如圖(b),D為y軸正半軸上一點(diǎn),連DB,DE⊥DB交拋物線于如圖所示的E點(diǎn),且DE=2DB,求E點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|y=
36-x2
},B={β|2kπ-
π
3
≤β≤2kπ+
π
3
,k∈Z},求A∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案