已知數(shù)列{an}滿(mǎn)足an+1=(n∈N*),且a1=.
(1)求證:數(shù)列是等差數(shù)列,并求an.
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,且,令.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列是等差數(shù)列,數(shù)列是各項(xiàng)都為正數(shù)的等比數(shù)列,且 , ,
.
(1)求數(shù)列,數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù),且按某種順序排列成等差數(shù)列.
(1)求實(shí)數(shù)的值;
(2)若等差數(shù)列的首項(xiàng)和公差都為,等比數(shù)列的首項(xiàng)和公比都為,數(shù)列和的前項(xiàng)和分別為,且,求滿(mǎn)足條件的自然數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)和,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2012•廣東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=,數(shù)列{an}滿(mǎn)足:2an+1-2an+an+1an=0且an≠0.?dāng)?shù)列{bn}中,b1=f(0)且bn=f(an-1).
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013·安徽高考)設(shè)數(shù)列{an}滿(mǎn)足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù)f(x)=x+an+1cos x-an+2sin x滿(mǎn)足f′=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
求第2行和第3行的通項(xiàng)公式和;
證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于()的表達(dá)式;
(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù)?,當(dāng)時(shí),都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com