【題目】對(duì)于無(wú)窮數(shù)列,若,,則稱(chēng)的“收縮數(shù)列”.其中,分別表示中的最大數(shù)和最小數(shù).已知為無(wú)窮數(shù)列,其前項(xiàng)和為,數(shù)列的“收縮數(shù)列”.

(1)若,求的前項(xiàng)和;

(2)證明:的“收縮數(shù)列”仍是

(3)若,,求所有滿(mǎn)足該條件的.

【答案】(1);(2)詳見(jiàn)解析;(3),.

【解析】

1)根據(jù)可得為遞增數(shù)列,從而可得,利用等差數(shù)列求和公式可得結(jié)果;(2)可證得,即,則可知,可證得結(jié)論;(3)令猜想可得,,整理可知此數(shù)列滿(mǎn)足題意;利用反證法可證得不存在數(shù)列不滿(mǎn)足,符合題設(shè)條件,從而可得結(jié)論.

(1)由可得為遞增數(shù)列

由通項(xiàng)公式可知為等差數(shù)列

的前項(xiàng)和為:

(2)

,又

的“收縮數(shù)列”仍

(3)由可得:

當(dāng)時(shí),;

當(dāng)時(shí),,即,所以;

當(dāng)時(shí),,即(*),

,則,所以由(*)可得,與矛盾;

,則,所以由(*)可得

所以同號(hào),這與矛盾;

,則,由(*)可得.

猜想:滿(mǎn)足的數(shù)列是:

,

經(jīng)驗(yàn)證,左式

右式

下面證明其它數(shù)列都不滿(mǎn)足(3)的題設(shè)條件

由上述時(shí)的情況可知,時(shí),,是成立的

假設(shè)是首次不符合的項(xiàng),則

由題設(shè)條件可得(*)

,則由(*)式化簡(jiǎn)可得矛盾;

,則,所以由(*)可得

所以同號(hào),這與矛盾;

所以,則,所以由(*)化簡(jiǎn)可得.

這與假設(shè)矛盾.

所以不存在數(shù)列不滿(mǎn)足,符合題設(shè)條件

綜上所述:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓N與圓M關(guān)于直線(xiàn)對(duì)稱(chēng).

1)求圓N的方程.

2)是否存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn),使得被圓M截得的弦長(zhǎng)與被圓N截得的弦長(zhǎng)相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在四棱錐中,,,的中點(diǎn),是等邊三角形,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線(xiàn)年產(chǎn)量為件,該生產(chǎn)線(xiàn)分為兩段,流水線(xiàn)第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見(jiàn)下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.

(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線(xiàn)第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線(xiàn)一年能為該公司創(chuàng)造的利潤(rùn);

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線(xiàn)第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線(xiàn)第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買(mǎi)該設(shè)備?說(shuō)明理由.

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)與雙曲線(xiàn)的焦點(diǎn)重合,并且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(II) 設(shè)橢圓C短軸的上頂點(diǎn)為P,直線(xiàn)不經(jīng)過(guò)P點(diǎn)且與相交于、兩點(diǎn),若直線(xiàn)PA與直線(xiàn)PB的斜率的和為,判斷直線(xiàn)是否過(guò)定點(diǎn),若是,求出這個(gè)定點(diǎn),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),點(diǎn),,過(guò)點(diǎn)的平行線(xiàn)交于點(diǎn).設(shè)點(diǎn)的軌跡為.

(Ⅰ)求曲線(xiàn)的方程;

(Ⅱ)已知直線(xiàn)與圓相切于點(diǎn),且與曲線(xiàn)相交于,兩點(diǎn),的中點(diǎn)為,求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;

(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù))在上有兩個(gè)零點(diǎn),則的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案