13.已知集合A={x|x2-x-2>0},B={x|x>1},則A∪B=(  )
A.{x|x>1}B.{x|x≤-1}C.{x|x>1或x<-1}D.{x|-1≤x≤1}

分析 先分別求出集合A和B,由此利用并集定義能求出A∪B.

解答 解:∵集合A={x|x2-x-2>0}={x|x<-1或x>2},
B={x|x>1},
∴A∪B={x|x>1或x<-1}.
故選:C.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和.若S3=12,a2+a4=4,則S6=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C對(duì)應(yīng)的邊長(zhǎng)分別是a,b,c,且$C=\frac{π}{3}$,c=4.
(Ⅰ)若$sinA=\frac{3}{4}$,求a;
(Ⅱ)若△ABC的面積等于$4\sqrt{3}$,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=a(2cos2$\frac{x}{2}$+sinx)+b.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)遞增區(qū)間及對(duì)稱(chēng)軸方程;
(2)當(dāng)a>0時(shí),且x∈[0,π]時(shí),f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a,b∈R,下列四個(gè)條件中,使“a>b”成立的必要而不充分的條件是( 。
①a>b-1  ②a>b+1  ③|a|>b  ④a>|b|
A.②③B.①④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線(xiàn)T:$\frac{{x}^{2}}{4}$-y2=1,過(guò)點(diǎn)B(-2,0)的直線(xiàn)交雙曲線(xiàn)T于點(diǎn)A(點(diǎn)A不為雙曲線(xiàn)頂點(diǎn)),若AB中點(diǎn)Q在直線(xiàn)y=x上,點(diǎn)P為雙曲線(xiàn)T上異于A(yíng),B的任意一點(diǎn)且不為雙曲線(xiàn)的頂點(diǎn),直線(xiàn)AP,BP分別交直線(xiàn)y=x于M,N兩點(diǎn),則$\overrightarrow{OM}$•$\overrightarrow{ON}$的值為( 。
A.-$\frac{8}{3}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線(xiàn)$y=\sqrt{3}x+2$的傾斜角是( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知E={θ|cosθ<sinθ,0≤θ≤2π},F(xiàn)={θ|tanθ<sinθ}.則E∩F為(  )
A.$(\frac{π}{2},π)$B.$(\frac{π}{4},\frac{3π}{4})$C.$(π,\frac{3π}{2})$D.$(\frac{3π}{4},\frac{5π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知$sinα+sin({\frac{π}{2}+α})=\frac{{2\sqrt{5}}}{5}$,則sin2α的值為-$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案