15.設(shè)集合A={x|y=log2(x-1)},$B=\{y|y=\sqrt{2-x}\}$,則A∩B=( 。
A.(0,2]B.(1,2)C.(1,+∞)D.(1,2]

分析 運用對數(shù)函數(shù)的定義域和含根號函數(shù)的值域,化簡集合A,B,再由交集的定義,即可得到所求集合.

解答 解:集合A={x|y=log2(x-1)}={x|x-1>0}={x|x>1},
$B=\{y|y=\sqrt{2-x}\}$={y|y≥0},
則A∩B={x|x>1}∩{y|y≥0}=(1,+∞)∩[0,+∞)=(1,+∞),
故選:C.

點評 本題考查集合的交集的求法,注意運用對數(shù)函數(shù)的定義域和含根號函數(shù)的值域,考查定義法的運用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.某同學利用暑假60天到一家商場勤工儉學.該商場向他提供了三種付酬:第一種,每天支付38元;第二種,第一天付4元,第二天付8元,第三天付12元,依此類推;第三種,第一天付0.4元,以后每天比前一天翻一番(即增加1倍),他應(yīng)該選擇哪種方式領(lǐng)取報酬呢?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)x,y∈R+且xy-(x+y)=1,則( 。
A.$x+y≤2(\sqrt{2}+1)$B.$xy≤\sqrt{2}+1$C.$x+y≤{(\sqrt{2}+1)^2}$D.$xy≥{(\sqrt{2}+1)^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調(diào)查,銷售單價x和銷售量y之間的一組數(shù)據(jù)如表所示:
月份i789101112
銷售單價xi(元)99.51010.5118
銷售量yi(件)111086514
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應(yīng)定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,參考數(shù)據(jù):$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖直三棱柱ABC-A1B1C1 中AC=2AA1,AC⊥BC,D、E 分別為A1C1、AB 的中點.求證:
(1)AD⊥平面BCD
(2)A1E∥平面BCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若曲線y=lnx的一條切線是直線$y=\frac{1}{2}x+b$,則實數(shù)b的值為-1+ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.五面體ABC-DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(Ⅰ)求證:G是DE中點;
(Ⅱ)求二面角A-CE-F的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,△ABC在$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow$,M,N分是$\overrightarrow{CA}$,$\overrightarrow{CB}$上的點,且$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{CN}$=$\frac{1}{2}$$\overrightarrow$,設(shè)$\overrightarrow{AN}$與$\overrightarrow{BM}$ 交于P,用向量$\overrightarrow{a}$,$\overrightarrow$ 表示向量$\overrightarrow{CP}$,并求出AP:PN,BP:PM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的焦點在y軸上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓有( 。
A.12個B.20個C.24個D.35個

查看答案和解析>>

同步練習冊答案