分析 以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體棱長為2.則A1(2,0,2),F(xiàn))1,0,0),D1(0,0,2),E(0,2,1),則$\overrightarrow{{A}_{1}F}=(-1,0,-2)$,$\overrightarrow{{D}_{1}E}=(0,-2,-1)$,$cos<\overrightarrow{{D}_{1}E},\overrightarrow{{A}_{1}F}>$=$\frac{\overrightarrow{{D}_{1}E}•\overrightarrow{{A}_{1}F}}{|\overrightarrow{{D}_{1}E}||\overrightarrow{{A}_{1}F}|}$=$\frac{2}{\sqrt{5}×\sqrt{5}}=\frac{2}{5}$.
解答 解:如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體棱長為2.
則A1(2,0,2),F(xiàn))1,0,0),D1(0,0,2),E(0,2,1)
則$\overrightarrow{{A}_{1}F}=(-1,0,-2)$,$\overrightarrow{{D}_{1}E}=(0,-2,-1)$,
$cos<\overrightarrow{{D}_{1}E},\overrightarrow{{A}_{1}F}>$=$\frac{\overrightarrow{{D}_{1}E}•\overrightarrow{{A}_{1}F}}{|\overrightarrow{{D}_{1}E}||\overrightarrow{{A}_{1}F}|}$=$\frac{2}{\sqrt{5}×\sqrt{5}}=\frac{2}{5}$,
∴異面直線D1E和A1F所成角的余弦值等于$\frac{2}{5}$,
故答案為:$\frac{2}{5}$.
點(diǎn)評(píng) 本題考查了向量法求異面直線夾角,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{27}$ | B. | $\frac{2}{9}$ | C. | $\frac{2}{27}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1” | |
B. | 命題“若α>β,則sinα>sinβ”的逆否命題為真命題 | |
C. | 命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0” | |
D. | “x2+x-2>0”的一個(gè)充分不必要條件是“x>1” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ② | B. | ③④ | C. | ① | D. | ①④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com