【題目】已知函數(shù),,其中.

(1)討論的單調(diào)性;

(2)設(shè)函數(shù),當(dāng)時,若,總有成立,求實數(shù)的取值范圍.

【答案】(1)詳見解析;(2).

【解析】

1)求出導(dǎo)函數(shù),然后根據(jù)導(dǎo)函數(shù)的符號判斷出函數(shù)的單調(diào)性.(2)由題意可得問題等價于“上的最大值不小于上的最大值”.所以分別求出函數(shù)上的最大值和函數(shù)上的最大值,根據(jù)題意建立不等式組,解不等式組可得所求結(jié)果.

(1)∵

①當(dāng)時,,此時上單調(diào)遞增;

②當(dāng)時,

,則單調(diào)遞減;若,則單調(diào)遞增.

綜上可得,當(dāng)時,上單調(diào)遞增;

當(dāng)時,上單調(diào)遞減,在上單調(diào)遞增.

(2)當(dāng)時,,

∴當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

∴當(dāng)時,

上的最大值為中的較大者.

由題意得“,,總有成立”等價于“上的最大值不小于上的最大值”,

,即,解得

∴實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,證明:;

2)若,且,求的取值范圍;

3)若,且方程個不同的根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓E經(jīng)過M(﹣10),N01),P,)三點.

1)求圓E的方程;

2)若過點C2,2)作圓E的兩條切線,切點分別是A,B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,兩焦點分別為,右頂點為, .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過定點的直線與雙曲線的左支有兩個交點,與橢圓交于兩點,與圓交于兩點,若的面積為, ,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的頂點C在直線3x﹣y=0上,頂點A、B的坐標(biāo)分別為(4,2),(0,5).

)求過點A且在x,y軸上的截距相等的直線方程;

)若ABC的面積為10,求頂點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,斜率為1的直線l交橢圓于AB兩點,且線段AB的中點坐標(biāo)為

求橢圓的方程;

P是橢圓與雙曲線在第一象限的交點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月25日,平昌冬奧會閉幕式上的“北京8分鐘”驚艷了世界。我們學(xué)校為了讓我們更好的了解奧運,了解新時代祖國的科技發(fā)展,在高二年級舉辦了一次知識問答比賽。比賽共設(shè)三關(guān),第一、二關(guān)各有兩個問題,兩個問題全答對,可進(jìn)入下一關(guān);第三關(guān)有三個問題,只要答對其中兩個問題,則闖關(guān)成功。每過一關(guān)可一次性獲得分別為1、2、3分的積分獎勵,高二、一班對三關(guān)中每個問題回答正確的概率依次為,且每個問題回答正確與否相互獨立.

1表示事件高二、一班未闖到第三關(guān),求的值;

(2)記表示高二、一班所獲得的積分總數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).

1)將V表示成r的函數(shù)Vr),并求該函數(shù)的定義域;

2)討論函數(shù)Vr)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

查看答案和解析>>

同步練習(xí)冊答案