如圖,在四棱錐中,底面為矩形,平面,,為中點.
(1)證明://平面;
(2)證明:平面.
(1)參考解析;(2)參考解析
解析試題分析:(1)直線與平面平行的證明,根據(jù)判斷定理要在平面內(nèi)找一條直線與與該直線平行.所以要證//平面,找到直線即可.
(2)要證直線與平面垂直根據(jù)判斷定理要在平面內(nèi)找到兩條相交的直線與該直線垂直即可.通過分析直線AE⊥PD由題意可得;另外直線CD垂直平面PAD,所以有可得直線CD垂直直線AE.又由于直線CD與直線PD相交,所以可證得結(jié)論.
試題解析:證明:(1)因為底面為矩形,
所以 .又因為 平面,平面,
所以 //平面.
(2)因為,為中點,
所以,因為 平面,
所以.又底面為矩形,
所以.
所以平面.
所以.
所以平面.
考點:1.線面平行的判斷.2.線面垂直的判斷.3.線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化.4.空間圖像感.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,對角線A1C與平面BDC1交于點O,AC、BD交于點M,E為AB的中點,F(xiàn)為AA1的中點.求證:
(1)C1、O、M三點共線;
(2)E、C、D1、F四點共面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,底面△ABC是等邊三角形,D為AB中點.
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是矩形,且CD⊥DA1,求證:三棱柱ABCA1B1C1是正三棱柱.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)如圖所示,證明命題“a是平面π內(nèi)的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.
(2)寫出上述命題的逆命題,并判斷其真假(不需證明).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖四棱錐中,底面是平行四邊形,平面是的中點,.
(1)試判斷直線與平面的位置關(guān)系,并予以證明;
(2)若四棱錐體積為 ,,求證:平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com