(本小題滿分13分)

     設(shè)函數(shù),其圖像過點(diǎn)(0,1).

  (1)當(dāng)方程的兩個(gè)根分別為是,1時(shí),求f(x)的解析式;

  (2)當(dāng)時(shí),求函數(shù)f(x)的極大值與極小值.

解:由題意可知,f(0)=1所以c=1    ………… ………………………. ……………………….1分

(Ⅰ).

因?yàn)?sub>,即的兩個(gè)根分別為

所以解得

           ………… ………………………. ……………………….6分

(Ⅱ)

所以,………… ………………………. ……………………….7分

①若b>0,則當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增

          當(dāng)時(shí),函數(shù)f(x)單調(diào)遞減

           當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增

  因此,f(x)的極大值為f(0)=c=1,

f(x)的極小值為    ……… ………………………. ……………………….10分

  ②若b<0,則當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增

          當(dāng)時(shí),函數(shù)f(x)單調(diào)遞減

           當(dāng)時(shí),函數(shù)f(x)單調(diào)遞增

因此,f(x)的極大值為

      f(x)的極小值為f(0)=1.

綜上所述,當(dāng)b>0時(shí), f(x)的極大值為1, 極小值為,

         當(dāng)b<0時(shí), f(x)的極大值為, 極小值為1. ………………. ……………………….13分

         

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案