精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x2+px+q和g(x)=x+
4
x
都是定義在A{x|1≤x≤
5
2
}上,對任意的x∈A,存在常數x0∈A,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在A上的最大值為( 。
A、
5
2
B、
17
4
C、5
D、
41
40
分析:由已知很容易得到函數g(x)=x+
4
x
 在區(qū)間[1,
5
2
]上的最小值為g(2)=4,于是函數f(x)=x2+px+q也在x=2處取到最小值f(2),下面只需代入數值即可求解.
解答:解:由已知函數f(x)=x2+px+q和g(x)=x+
4
x
在區(qū)間[1,
5
2
]上都有最小值f(x0),g(x0),
又因為g(x)=x+
4
x
 在區(qū)間[1,
5
2
]上的最小值為g(2)=4,
f(x)min=f(2)=g(2)=4,
所以得:
-
p
2
=2
4+2p+q=4
,
即:
p=-4
q=8

所以得:f(x)=x2-4x+8≤f(1)=5.
故選C.
點評:本題考查函數的單調性,利用單調性求解函數在區(qū)間上最值的方法,考查二次函數,對勾函數等函數型的性質;考查函數與方程,轉化與化歸等數學思想方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案