【題目】已知函數(shù).
(1)若存在極值,求實(shí)數(shù)a的取值范圍;
(2)設(shè),設(shè)是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導(dǎo)函數(shù));
(ⅱ)討論的零點(diǎn)個數(shù).
【答案】(1).(2)(ⅰ)證明見解析;(ⅱ)答案見解析
【解析】
(1)求導(dǎo)得,按照、分類,求得、的解集即可得解;
(2)(ⅰ)令,對求導(dǎo),按照、分類,證明恒大于0,即可得證;
(ⅱ)由的單調(diào)性結(jié)合,按照、分類,結(jié)合即可得解.
(1)求導(dǎo)得,
當(dāng)時,,在R上單調(diào)遞減,無極值;
當(dāng)時,在單調(diào)遞減,在上單調(diào)遞增,
則在處有極小值.
綜上,實(shí)數(shù)a的取值范圍為;
(2)(ⅰ)證明:由題意,
∵令,
∴,
∵,
當(dāng)時,,,,
則;
當(dāng)時,令,則,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以,所以,
從而有:,而,
則,則;
綜上,對都有成立,
故在區(qū)間單調(diào)遞增;
(ⅱ)由(ⅰ)知,在區(qū)間單調(diào)遞增且,
①當(dāng)時,,
當(dāng)時,則在單調(diào)遞減;
當(dāng)時,則在單調(diào)遞增,
則是的唯一極小值點(diǎn),且,
從而可知:當(dāng)時,在區(qū)間有唯一零點(diǎn)0;
②當(dāng)時,有,
且,
故存在使,
此時在單調(diào)遞減,在單調(diào)遞增,
且
,
又,由零點(diǎn)存在定理知:
則在區(qū)間有唯一零點(diǎn),記作,
從而可知:當(dāng)時,在區(qū)間上有兩個零點(diǎn):0和;
綜上:①當(dāng)時,在區(qū)間有唯一零點(diǎn)0;
②當(dāng)時,在區(qū)間有兩個不同零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直四棱柱被平面所截,所得的一部分如圖所示,.
(1)證明:平面;
(2)若,,平面與平面所成角的正切值為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)X是有限集,t為正整數(shù),F是包含t個子集的子集族:F=.如果F中的部分子集構(gòu)成的集族S滿足:對S中任意兩個不相等的集合A、B,均不成立,則稱S為反鏈.設(shè)S1為包含集合最多的反鏈,S2是任意反鏈.證明:存在S2到S1的單射f,滿足或成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】莊子說:“一尺之錘,日取其半,萬世不竭”,這句話描述的是一個數(shù)列問題,現(xiàn)用程序框圖描述,如圖所示,若輸入某個正整數(shù)n后,輸出的S∈(,),則輸入的n的值為( 。
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn),離心率為,點(diǎn)是橢圓上的動點(diǎn),的最大面積是.
(1)求橢圓的方程;
(2)圓E經(jīng)過橢圓的左、右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,為坐標(biāo)原點(diǎn),直線交橢圓于兩點(diǎn),且.
(i) 求直線的斜率;
(ii)當(dāng)的面積取到最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),過點(diǎn)A作x軸的垂線,垂足為點(diǎn),設(shè)直線BE與橢圓的另一交點(diǎn)為P,連接AP得到直線l,交x軸于點(diǎn)M,交y軸于點(diǎn)N.
(1)若,求直線AP的斜率;
(2)記的面積分別為S1,S2,S3,求的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓(a>b>0)的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F2的直線交橢圓于M,N兩點(diǎn).已知橢圓的短軸長為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線MN的斜率為時,求的值;
(3)若以MN為直徑的圓與x軸相交的右交點(diǎn)為P(t,0),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年新冠肺炎疫情期間,某區(qū)政府為了解本區(qū)居民對區(qū)政府防疫工作的滿意度,從本區(qū)居民中隨機(jī)抽取若干居民進(jìn)行評分(滿分分).根據(jù)調(diào)查數(shù)據(jù)制成如下表格和頻率分布直方圖.已知評分在的居民有人.
滿意度評分 | ||||
滿意度等級 | 不滿意 | 基本滿意 | 滿意 | 非常滿意 |
(1)求頻率分布直方圖中的值及所調(diào)查的總?cè)藬?shù);
(2)定義滿意度指數(shù)(滿意程度的平均分)/100,若,則防疫工作需要進(jìn)行大的調(diào)整,否則不需要大調(diào)整.根據(jù)所學(xué)知識判斷該區(qū)防疫工作是否需要進(jìn)行大調(diào)整?
(3)為了解部分居民不滿意的原因,從不滿意的居民(評分在、)中用分層抽樣的方法抽取名居民,傾聽他們的意見,并從人中抽取人擔(dān)任防疫工作的監(jiān)督員,求這人中僅有一人對防疫工作的評分在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com