【題目】已知是直線上任意兩點(diǎn),外一點(diǎn),若上一點(diǎn)滿足,則的值是________.

【答案】

【解析】

依題意知,cosθ+cos2θ1,于是得cosθsin2θ,sin6θ2cosθ1sin2θ+sin4θ+sin6θ2cosθ,解方程cosθ+cos2θ1,可求得cosθ,從而可得答案.

解:∵A、BC三點(diǎn)共線,且cosθcos2θ

cosθ+cos2θ1,(三點(diǎn)共線的充要條件)

cos2θ1cosθ

cosθ1cos2θsin2θ,

sin6θcos3θcosθ1sin2θ)=cosθ1cosθ)=cosθcos2θcosθ﹣(1cosθ)=2cosθ1,

sin2θ+sin4θ+sin6θ

cosθ+cos2θ+2cosθ1

cosθ+1cosθ+2cosθ1

2cosθ,

cos2θ1cosθcosθcosθ1,舍去,

cosθ,

∴原式=2cosθ1,

故答案為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 y = x3 + x2 在點(diǎn) P0 處的切線平行于直線

4xy1=0,且點(diǎn) P0 在第三象限,

P0的坐標(biāo);

若直線, l 也過切點(diǎn)P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)AB分別是雙曲線的左右頂點(diǎn),設(shè)過的直線PA,PB與雙曲線分別交于點(diǎn)M,N,直線MNx軸于點(diǎn)Q,過Q的直線交雙曲線的于ST兩點(diǎn),且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若不等式解集非空,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)設(shè)函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

(3)是否存在一條直線與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,,分別是橢圓的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿足軸,

1)求橢圓E的離心率;

2)過點(diǎn)的直線l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】612日,上海市發(fā)布了《上海市生活垃圾分類投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類.某幢樓前有四個(gè)垃圾桶,分別標(biāo)有可回收物、有害垃圾濕垃圾、干垃圾,小明同學(xué)要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報(bào)紙(可回收物)全部投入到這四個(gè)桶中,若每種垃圾投放到每個(gè)桶中都是等可能的,那么隨機(jī)事件“4種垃圾中至少有2種投入正確的桶中的概率是______.

查看答案和解析>>

同步練習(xí)冊答案