三個(gè)半徑為的球互相外切,且每個(gè)球都同時(shí)與另兩個(gè)半徑為的球外切.如果這兩個(gè)半徑為的球也互相外切,則的關(guān)系是( ▲ )
A.B.C.D.
D
設(shè)分別是半徑為的三個(gè)球的球心,分別是半徑為的兩個(gè)球的球心,則它們構(gòu)成立體圖形(如圖),是△的中心.因?yàn)椤?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115510659327.gif" style="vertical-align:middle;" />是邊長(zhǎng)為的正三角形,所以,.又是以為直角的直角三角形,故,即,解得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),將沿AE折起,使平面平面ABCE,得到幾何體.(1)求證:平面;(2)求BD和平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,在梯形中,

平面,且
(1)求異面直線間的距離;
(2)求直線與平面所成的角;
(3)已知是線段上的動(dòng)點(diǎn),若二面角
大小為,求AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱錐P-ABCD中,

底面ABCD為直角梯形,且AB//CD,ABAD,AD=CD=2AB=2.
側(cè)面為正三角形,且平面PAD⊥平面ABCD.網(wǎng)
(1)若MPC上一動(dòng)點(diǎn),則M在何位置時(shí),PC⊥平面MDB?并加已證明;(2)若G的重心,求二面角G-BD-C大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,P—ABCD是正四棱錐,是正方體,其中 
(1)求證:;
(2)求PA與平面所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,2AB=2BC=CC1=2,D是棱CC1的中點(diǎn) (1)求證B1D⊥平面ABD;
 (2)平面AB1D與側(cè)面BB1C1C所成銳角的大小        C1               B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在長(zhǎng)方體ABCD-A1B1C1D1中,A1A=AB=2,若棱AB上存在一點(diǎn)P,使得D1P⊥PC,則棱AD的長(zhǎng)的取值范圍是( 。
A.[1,
2
]
B.(0,
2
]
C.(0,
2
)
D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在四面體P-ABC中,對(duì)棱相互垂直,則點(diǎn)P在平面ABC上的射影為△ABC的( 。
A.重心B.外心C.垂心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面六面體中,既與共面也與共面的棱的條數(shù)為  (   )
A.3B.4 C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案