設(shè)函數(shù),,其中為實(shí)數(shù),若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍.
a∈(e,+∞)

試題分析:分別利用導(dǎo)數(shù)求出單調(diào)區(qū)間與上的最小值,與給定的上是單調(diào)減函數(shù),且上有最小值相結(jié)合,得出關(guān)于的關(guān)系式,可得的取值范圍.
解:令,
考慮到f(x)的定義域?yàn)?0,+∞),故a>0,進(jìn)而解得x>a-1,即f(x)在(a-1,+∞)上是單調(diào)減函數(shù),
同理,f(x)在(0,a-1)上是單調(diào)增函數(shù).
由于f(x)在(1,+∞)上是單調(diào)減函數(shù),故(1,+∞)(a-1,+∞),從而a-1≤1,即a≥1,
令g'(x)=ex-a=0,得
當(dāng)時(shí), ;當(dāng)x>時(shí),
又g(x)在(1,+∞)上有最小值,所以,
即a>e.綜上,有a∈(e,+∞).
考點(diǎn):利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對(duì)一切正實(shí)數(shù)x恒成立,求t的取值范圍;
(2)設(shè),且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)討論在其定義域上的單調(diào)性;
(2)當(dāng)時(shí),求取得最大值和最小值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,且函數(shù)處有極值,則ab的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,若等于(   )
A.B.eC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則=     (     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),則(    ).
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案