如圖,球O夾在銳二面角α-l-β之間,與兩個半平面的切點分別為A、B,若AB=
3
,球心O到二面角的棱l的距離為2,則球O的表面積為
分析:設OAB平面與棱l交于點C,則△OAC為直角三角形,利用等面積,求出球的半徑,從而可求球的表面積.
解答:解:設OAB平面與棱l交于點C,則△OAC為直角三角形,且AB⊥OC,OC=2

設OA=x,AC=y,則由等面積可得xy=
3

∵x2+y2=4
x=1
y=
3
x=
3
y=1

x=1
y=
3
時,∠ACO=30°,∠ACB=60°,滿足題意,球的表面積為4π;
x=
3
y=1
時,∠ACO=60°,∠ACB=120°,不滿足題意,
故答案為:4π
點評:本題考查球的表面積,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•樂山二模)如圖,球O夾在銳二面角α-l-β之間,與兩個半平面的切點分別為A、B,若AB=
3
,球心O到二面角的棱l的距離為2,則球O的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,球O夾在銳二面角α-l-β之間,與兩個半平面的切點分別為A、B,若數(shù)學公式,球心O到二面角的棱l的距離為2,則球O的表面積為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年吉林省吉林一中高一(上)11月月考數(shù)學試卷(解析版) 題型:選擇題

如圖,球O夾在銳二面角α-l-β之間,與兩個半平面的切點分別為A、B,若AB=,球心O到二面角的棱l的距離為2,則球O的表面積為( )

A.4π
B.12π
C.36π
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省樂山市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

如圖,球O夾在銳二面角α-l-β之間,與兩個半平面的切點分別為A、B,若AB=,球心O到二面角的棱l的距離為2,則球O的表面積為( )

A.4π
B.12π
C.36π
D.

查看答案和解析>>

同步練習冊答案