在△ABC中,點P在BC上,且
BP
=2
PC
,點Q為
AC
中點,若
PA
=(4,3),
PQ
=(1,5),則
BC
=( 。
A.( 2,7)?B.(6,21)?C.(2,-7)?D.(-6,21)
由于在△ABC中,點P在BC上,且
BP
=2
PC
,∴
BP
=
2
3
BC

BC
=(x,y),則
PC
=
1
3
BC
=(
x
3
,
y
3
).
再由Q為
AC
中點,可得
PQ
=
1
2
PA
+
PC
).
再由
PA
=(4,3),
PQ
=(1,5),可得 (1,5)=
1
2
(4+
x
3
,3+
y
3
),即
x
6
+2=1,
y
6
+
3
2
=5.
解得 x=-6,y=21,故
BC
=(-6,21),
故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,點Q是AC的中點,若
PA
=(4,3)
,
PQ
=(1,5)
,則
BC
=( 。
A、(-2,7)
B、(-6,21)
C、(2,-7)
D、(6,-21)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,點Q是AC的中點,若
PA
=(4,3)
PQ
=(1,5)

BC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,Q是AC的中點,以P為坐標原點建立平面直角坐標系,若
PA
=(4,3),
PQ
=(1,5)
,則
BC
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,點Q為
AC
中點,若
PA
=(4,3),
PQ
=(1,5),則
BC
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,點PBC上,且=2,點QAC的中點,若=(4,3),=(1,5),則=(  )

A.(-2,7)              B.(-6,21)

C.(2,-7)         D.(6,-21)

查看答案和解析>>

同步練習冊答案