(本題滿分14分,其中第1小題8分,第2小題6分)

一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為件. 經(jīng)市場調(diào)查后得到如下規(guī)律:若對產(chǎn)品進行電視廣告的宣傳,每天的銷售量(件)與電視廣告每天的播放量(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).

(1)試寫出該產(chǎn)品每天的銷售量(件)關(guān)于電視廣告每天的播放量(次)的函數(shù)關(guān)系式;

(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加,則每天電視廣告的播放量至少需多少次?

(1)(2)3次


解析:

(1)設(shè)電視廣告播放量為每天次時,該產(chǎn)品的銷售量為).

由題意,

于是當(dāng)時,,().

所以,該產(chǎn)品每天銷售量(件)與電視廣告播放量(次/天)的函數(shù)關(guān)系式為[來源:Zxxk.Com]

.

(2)由題意,有.(

所以,要使該產(chǎn)品的銷售量比不做電視廣告時的銷售量增加,則每天廣告的播放量至少需4次.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三4月教學(xué)質(zhì)量檢測(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分。已知數(shù)列是各項均不為的等差數(shù)列,公差為,為其前項和,且滿足

.?dāng)?shù)列滿足,為數(shù)列的前n項和.

(1)求、;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué) 題型:解答題


(本題滿分14分)已知:A、B、C是的內(nèi)角,分別是其對邊長,向量,,且

(1)求角A的大。唬2)若的長

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測理科數(shù)學(xué)試卷 題型:解答題

(本題滿分14分)本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分8分.

某地政府為改善居民的住房條件,集中建設(shè)一批經(jīng)適樓房.用了1400萬元購買了一塊空地,規(guī)劃建設(shè)8幢樓,要求每幢樓的面積和層數(shù)等都一致,已知該經(jīng)適房每幢樓每層建筑面積均為250平方米,第一層建筑費用是每平方米3000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加80元.

(1)若該經(jīng)適樓房每幢樓共層,總開發(fā)費用為萬元,求函數(shù)的表達式(總開發(fā)費用=總建筑費用+購地費用);

(2)要使該批經(jīng)適房的每平方米的平均開發(fā)費用最低,每幢樓應(yīng)建多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測理科數(shù)學(xué)試卷 題型:解答題

(本題滿分14分)本題共有2個小題,第(1)小題滿分5分,第(2)小題滿分9分.

設(shè)雙曲線是它實軸的兩個端點,是其虛軸的一個端點.已知其一條漸近線的一個方向向量是,的面積是為坐標(biāo)原點,直線與雙曲線C相交于、兩點,且

(1)求雙曲線的方程;

(2)求點的軌跡方程,并指明是何種曲線.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海華師大一附中高三第二學(xué)期開學(xué)檢測試題數(shù)學(xué) 題型:解答題

(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.

如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中米,梯形的高為米,米,上部是個半圓,固定點的中點.△是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),是可以沿設(shè)施邊框上下滑動且始終保持和平行的伸縮橫桿.

(1)設(shè)之間的距離為米,試將三角通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);

(2)當(dāng)之間的距離為多少米時,三角通風(fēng)窗的通風(fēng)面積最大?并求出這個最大面積。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案