如圖,在平面直角坐標(biāo)系xoy中,拋物線yx 2x-10與x軸的交點為A,與y軸的交點為點B,過點Bx軸的平行線BC,交拋物線于點C,連結(jié)AC.現(xiàn)有兩動點P,Q分別從OC兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點DDEOA,交CA于點E,射線QEx軸于點F.設(shè)動點PQ移動的時間為t(單位:秒)

(1)求A,B,C三點的坐標(biāo)和拋物線的頂點坐標(biāo);

(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;

(3)當(dāng)t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;

(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

 


(1)在yx 2x-10中,令y=0,得x 2-8x-180=0.

解得x=-10或x=18,∴A(18,0).········································ 1分

yx 2x-10中,令x=0,得y=-10.

B(0,-10).·························· 2分

BCx軸,∴點C的縱坐標(biāo)為-10.

由-10=x 2x-10得x=0或x=8.

C(8,-10).························· 3分

yx 2x-10=(x-4)2

∴拋物線的頂點坐標(biāo)為(4,-).············································· 4分

(2)若四邊形PQCA為平行四邊形,由于QCPA,故只要QCPA即可.

QCtPA=18-4t,∴t=18-4t

解得t.······································································· 6分

(3)設(shè)點P運動了t秒,則OP=4t,QCt,且0<t<4.5,說明點P在線段OA上,且不與點O,A重合.

QCOP,     ∴

同理QCAF,∴,即

AF=4tOP

PFPAAFPAOP=18.················································ 8分

SPQF PF·OB×18×10=90

∴△PQF的面積總為定值90.·················································· 9分

(4)設(shè)點P運動了t秒,則P(4t,0),F(18+4t,0),Q(8-t,-10)  t(0,4.5).

PQ 2=(4t-8+t)2+10 2=(5t-8)2+100

FQ 2=(18+4t-8+t)2+10 2=(5t+10)2+100.

①若FPFQ,則18 2=(5t+10)2+100.

即25(t+2)2=224,(t+2)2

∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2=

t-2.································································· 11分

②若QPQF,則(5t-8)2+100=(5t+10)2+100.

即(5t-8)2=(5t+10)2,無0≤t≤4.5的t滿足.························· 12分

③若PQPF,則(5t-8)2+100=18 2

即(5t-8)2=224,由于≈15,又0≤5t≤22.5,

∴-8≤5t-8≤14.5,而14.5 2=()2<224.

故無0≤t≤4.5的t滿足此方程.············································· 13分

注:也可解出t<0或t>4.5均不合題意,

故無0≤t≤4.5的t滿足此方程.

綜上所述,當(dāng)t-2時,△PQF為等腰三角形.··················· 14分

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實數(shù)對(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為( 。
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點A、B分別在x軸、y軸上滑動,設(shè)點M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案