19.已知函數(shù)f(x)=ax3-bx+1,若f(-1)=3,則f(1)=-1.

分析 直接利用函數(shù)的解析式以及函數(shù)的奇偶性,求解函數(shù)值即可.

解答 解:函數(shù)f(x)=ax3-bx+1滿足f(-1)=3,
即:f(-1)=-a+b+1=3,a-b=-2,
則f(1)=a-b+1=-2+1=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查函數(shù)的值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a、b、c、d是四條互不重合的直線,且c、d分別為a、b在平面α上的射影,給出兩組判斷:第一組①a⊥b ②a∥b;   第二組③c⊥d ④c∥d,分別從兩組中各選一個(gè)論斷,使一個(gè)作條件,另一個(gè)作結(jié)論,寫出一個(gè)正確的命題若a∥b,則c∥d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x}$-x.
(1)當(dāng)a=-2時(shí),求f(x)的極值;
(2)當(dāng)a=1時(shí),證明:f(x)-$\frac{1}{e^x}$+x>0在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一道數(shù)學(xué)試題,甲、乙兩位同學(xué)獨(dú)立完成,設(shè)命題p是“甲同學(xué)解出試題”,命題q是“乙同學(xué)解出試題”,則命題“至少有一位同學(xué)沒有解出試題”可表示為( 。
A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知偶函數(shù)f(x)對(duì)任意x∈R滿足f(2+x)=f(2-x),且當(dāng)-3≤x≤0時(shí),f(x)=log3(2-x),則f(2015)的值為( 。
A.-1B.1C.0D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.長方體AC1的長、寬、高分別為3、2、1,求從A到C1沿長方體的表面的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合U={0,1,2,3,4,5},A={1,3},B={x∈Z|x2-5x+4<0},則∁U(A∪B)=( 。
A.{0,1,2,3}B.{1,2,4}C.{0,4,5}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在幾何體ABCDE中,四邊形ABCD是正方形,正三角形BCE的邊長為2,DE=2$\sqrt{2}$,F(xiàn)為線段CD上一點(diǎn),G為線段BE的中點(diǎn).
(1)求證:平面ABCD⊥平面BCE;
(2)求三棱錐A-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.把函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后,所得函數(shù)圖象的一條對(duì)稱軸為( 。
A.x=0B.x=$\frac{π}{6}$C.x=-$\frac{π}{12}$D.x=$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案