分析 令y=3x-a=0,則x=log3a,令y=π(x-3a)(x-2a)=0,則x=2a,或x=3a,根據(jù)f(x)恰有2個(gè)零點(diǎn),分類(lèi)討論滿足條件的a值,可得答案.
解答 解:令y=3x-a=0,則x=log3a,
令y=π(x-3a)(x-2a)=0,則x=2a,或x=3a,
若a≤0時(shí),則x=log3a無(wú)意義,此時(shí)函數(shù)無(wú)零點(diǎn);
若0<a<3,則x=log3a<1必為函數(shù)的零點(diǎn),此時(shí)若f(x)恰有2個(gè)零點(diǎn),則$\left\{\begin{array}{l}2a<1\\ 3a≥1\end{array}\right.$,解得:a∈$[\frac{1}{3},\frac{1}{2})$,
若a≥3,則x=log3a≥1必不為函數(shù)的零點(diǎn),2a≥1,3a≥1必為函數(shù)的零點(diǎn),此時(shí)a∈[3,+∞),
綜上可得實(shí)數(shù)a的取值范圍是:$[\frac{1}{3},\frac{1}{2})$∪[3,+∞),
故答案為:$[\frac{1}{3},\frac{1}{2})$∪[3,+∞)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,函數(shù)的零點(diǎn),分類(lèi)討論思想,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x+2y-3=0 | B. | x+2y-3=0 | C. | 2x+y-3=0 | D. | 2x+2y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com