14.給出下列四個(gè)命題:
(1)函數(shù)f(x)=loga(2x-1)-1的圖象過定點(diǎn)(1,0);
(2)化簡2${\;}^{{{log}_{\sqrt{2}}}5}}$+lg5lg2+(lg2)2-lg2的結(jié)果為25;
(3)若loga$\frac{1}{2}$<1,則a的取值范圍是(1,+∞);
(4)若2-x-2y>lnx-ln(-y)(x>0,y<0),則x+y<0.
其中所有正確命題的序號是(2)(4).

分析 結(jié)合對數(shù)函數(shù)的圖象和性質(zhì),逐一分析給定四個(gè)命題的真假,可得答案.

解答 解:(1)函數(shù)f(x)=loga(2x-1)-1的圖象過定點(diǎn)(1,-1),故(1)錯(cuò)誤;
(2)2${\;}^{{{log}_{\sqrt{2}}}5}}$+lg5lg2+(lg2)2-lg2=25+lg2(lg5+lg2)-lg2=25+lg2-lg2=25,故(2)正確;
(3)若loga$\frac{1}{2}$<1,則a的取值范圍是(0,$\frac{1}{2}$)∪(1,+∞),故(3)錯(cuò)誤;
(4)構(gòu)造函數(shù)F(t)=2-t-lnt,t∈(0,+∞),
顯然,F(xiàn)(t)為定義域上的減函數(shù),
因?yàn)閤>0,y<0,所以,-y>0,
故F(x)=2-x-lnx,F(xiàn)(-y)=2y-ln(-y),
由①式得,F(xiàn)(x)>F(-y),
且F(t)為定義域上的減函數(shù),
因此,x<-y,
即x+y<0,故(4)正確;
故答案為:(2)(4)

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了指數(shù)運(yùn)算對數(shù)運(yùn)算,對數(shù)函數(shù)的圖象和性質(zhì)等知識(shí)點(diǎn),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在正三角形ABC中,D是BC邊上的點(diǎn),若AB=3,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題“若p,則q”,假設(shè)其逆命題為真,則p是q的( 。
A.充分條件B.必要條件
C.既不是充分條件也不是必要條件D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y,z∈R,若-1,x,y,z,-3成等比數(shù)列,則xz的值為(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$±\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\sqrt{{x^2}+4x-12}$的單調(diào)減區(qū)間為( 。
A.[-2,+∞)B.(-∞,-2]C.(-∞,-6]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.($\frac{4}{9}$)${\;}^{\frac{1}{2}}$-($\frac{\sqrt{2}}{2}$)0+($\frac{27}{64}$)${\;}^{-\frac{1}{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,n∥α,則m∥nC.若m⊥α,m∥β,則α∥βD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)是定義在R上的函數(shù),對任意實(shí)數(shù)m,n,都有f(m)f(n)=f(m+n),且當(dāng)x<0時(shí),0<f(x)<1.
(1)證明:①f(0)=1;②當(dāng)x>0時(shí),f(x)>1;③f(x)是R上的增函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2-3ax+1)f(-3x+6a+1)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)定義在[-3,3]上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若f(1-2m)<f(2m)成立,則m的取值范圍是[-1,$\frac{1}{4}$).

查看答案和解析>>

同步練習(xí)冊答案