若函數(shù)f(x)=
x+1
x-1
(x≠±1)
,則下列各式中成立的是(  )
分析:根據(jù)函數(shù)f(x)表達(dá)式,可得f(-x)=
x-1
x+1
,從而可以計(jì)算出f(x)f(-x)=
x+1
x-1
x-1
x+1
=1,說明A正確,再分別說明B、C、D各項(xiàng)均不正確即可.
解答:解:∵f(x)=
x+1
x-1
,
f(-x)=
-x+1
-x-1
=
x-1
x+1

可得f(x)f(-x)=
x+1
x-1
x-1
x+1
=1,說明A正確而B不正確
而f(x)+f(-x)=
x+1
x-1
+
x-1
x+1
=
2x 2+2
x 2-1
≠0,說明C不正確
且f(x)-f(-x)=
x+1
x-1
-
x-1
x+1
=
4x
x 2-1
也不能恒等于0,說明D不正確
故選A
點(diǎn)評:本題考查了函數(shù)的對應(yīng)法則,函數(shù)式的化簡與計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足條件:當(dāng)x1,x2∈[-1,1]時(shí),有|f(x1)-f(x2)|≤3|x1-x2|成立,則稱f(x)∈Ω.對于函數(shù)g(x)=x3,h(x)=
1
x+2
,有( 。
A、g(x)∈Ω且h(x)∉Ω
B、g(x)∉Ω且h(x)∈Ω
C、g(x)∈Ω且h(x)∈Ω
D、g(x)∉Ω且h(x)∉Ω

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若函數(shù) f(x)=ax (a>0,a≠1 ) 的部分對應(yīng)值如表:

則不等 式f-1(│x│<0)的解集是       


  1. A.
    {x│-1<x<1}
  2. B.
    {x│x<-1或x>1}
  3. C.
    {x│0<x<1}
  4. D.
    {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案