已知函數(shù),其中.
(1)若對一切恒成立,求的取值范圍;
(2)在函數(shù)的圖像上取定兩點,記直線 的斜率為,證明:存在,使成立.

(1)
(2)由題意可得

解析試題分析:(1),令
當(dāng)單調(diào)遞減;當(dāng)時,單調(diào)遞增
∴當(dāng)時, 有最小值
于是對于一切,恒成立,當(dāng)且僅當(dāng)    ①
,則
當(dāng)時,取最大值1,當(dāng)且僅當(dāng)時,①式成立
綜上所述的取值的集合為
(2)由題意可得




當(dāng)單調(diào)遞減;當(dāng)時,單調(diào)遞增。故當(dāng)時,
,又,
所以
所以存在,使
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,不等式恒成立問題。
點評:典型題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。求函數(shù)的極值問題,基本步驟是“求導(dǎo)數(shù)、求駐點、研究單調(diào)性、求極值”!昂愠闪栴}”往往通過構(gòu)造函數(shù),研究函數(shù)的最值,使問題得到解答。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若函數(shù)上無零點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(1)當(dāng)時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)和“偽二次函數(shù)” .
(Ⅰ)證明:只要,無論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點A(),B(),線段AB中點為C(),記直線AB的斜率為k.
(1)對于二次函數(shù),求證
(2)對于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)有極值,
(Ⅰ)求的取值范圍;
(Ⅱ)求極大值點和極小值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)當(dāng)時,求證:上單調(diào)遞增;
(2)當(dāng)時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實數(shù),函數(shù)
(Ⅰ)若函數(shù)有極大值32,求實數(shù)的值;
(Ⅱ)若對,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案