分析 (1)直接利用余弦定理化簡(jiǎn)已知條件,然后求角A的余弦函數(shù)值,即可求解;
(2)由已知利用余弦定理可得c2-4c+1=0,即可解得c的值.
解答 解:(1)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若$\frac{c}{2}$=b-acosC=b-a$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
可得2b2-bc=a2+b2-c2,即c2+b2-bc=a2,又由余弦定理c2+b2-2bccosA=a2,
∴cosA=$\frac{1}{2}$,
∴A=60°.
(2)∵a=$\sqrt{15}$,b=4,A=60°,
∴由余弦定理a2=b2+c2-2bccosA,可得:15=16+c2-2×$4×c×\frac{1}{2}$,整理可得:c2-4c+1=0,
∴解得:c=2±$\sqrt{3}$.
點(diǎn)評(píng) 本題考查余弦定理在解三角形中的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x=3或y=1} | B. | {3,1} | C. | {(3,1)} | D. | (3,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{13}$ | B. | $\frac{5}{7}$ | C. | $\frac{17}{25}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com