已知函數(shù),其中=
(1)求函數(shù)f(x)在區(qū)間上的單調(diào)遞增區(qū)間和值域;
(2)在△ABC中,a、b、c分別是角A、B、C 的對邊,f(A)=-1,且b=1△ABC的面積,求邊a的值.
【答案】分析:(1)利用向量的數(shù)量積,二倍角公式兩角差的余弦函數(shù)化簡函數(shù)的表達(dá)式,然后結(jié)合余弦函數(shù)的單調(diào)增區(qū)間求函數(shù)的單調(diào)遞增區(qū)間,確定函數(shù) 在上的單調(diào)增區(qū)間,單調(diào)減區(qū)間,然后求出函數(shù)的最大值最小值,即可確定函數(shù)的值域.
(2))由于f(A)=-1,求得求得c=4最后由余弦定理得a值即可.
解答:解:(1)==(2分)
,
∴單調(diào)增區(qū)間為.(4分)
∴-1≤f(x)≤2∴f(x)∈[-1,2](6分)
(2)∵f(A)=-1,∴,(8分)
,∴c=4(10分)
由余弦定理得a2=b2+c2-2bccosA=13(12分)
點(diǎn)評:本題是基礎(chǔ)題,考查向量數(shù)量積的應(yīng)用,三角函數(shù)的化簡求值,單調(diào)區(qū)間的求法,最值的求法,考查計(jì)算能力,注意函數(shù)值域的確定中,區(qū)間的討論,單調(diào)性的應(yīng)用是解題的易錯點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年臨沂市質(zhì)檢一文)(14分)已知函數(shù)(其中a>0),且在點(diǎn)(0,0)處的切線與直線平行。

   (1)求c的值;

   (2)設(shè)的兩個極值點(diǎn),且的取值范圍;

   (3)在(2)的條件下,求b的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

⒗ 已知函數(shù),其中為實(shí)數(shù),且處取得的極值為

⑴求的表達(dá)式;

⑵若處的切線方程。

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),.

函數(shù)的單調(diào)區(qū)間;

當(dāng)時,求函數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)文數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(其中是實(shí)數(shù)常數(shù),

(1)若,函數(shù)的圖像關(guān)于點(diǎn)(—1,3)成中心對稱,求的值;

(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;

(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆陜西省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)(其中)的圖象如圖(上)所示,則函數(shù)的圖象是( �。�                                                    

 

查看答案和解析>>

同步練習(xí)冊答案