【題目】已知 =(4,5cosα), =(3,﹣4tanα)α∈(0, ),
(1)求 ;
(2)求

【答案】
(1)解:∵ ,

=4×3+5cosα×(﹣4tanα)=12﹣20sinα=0,

∴sinα= ,

∵α∈(0, ),

,


(2)解:
【解析】(1)由已知利用平面向量垂直的性質(zhì)可求sinα,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα的值,進(jìn)而可求 ,進(jìn)而計(jì)算得解.(2)利用誘導(dǎo)公式,二倍角的余弦函數(shù)公式化簡所求結(jié)合cosα的值即可計(jì)算得解.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系和兩角和與差的正弦公式,掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直;兩角和與差的正弦公式:即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

回歸方程為 =bx+a,其中b= ,a= ﹣b
(1)畫出散點(diǎn)圖,并判斷廣告費(fèi)與銷售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預(yù)測(cè)銷售額為115萬元時(shí),大約需要多少萬元廣告費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=2x2 , 直線y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線交C于點(diǎn)N. (Ⅰ)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(Ⅱ)是否存在實(shí)數(shù)k使 ,若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C: =1(0<b<3)的右焦點(diǎn)為F,P為橢圓上一動(dòng)點(diǎn),連接PF交橢圓于Q點(diǎn),且|PQ|的最小值為

(1)求橢圓方程;
(2)若 ,求直線PQ的方程;
(3)M,N為橢圓上關(guān)于x軸對(duì)稱的兩點(diǎn),直線PM,PN分別與x軸交于R,S,求證:|OR||OS|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(2x+ )+ cos(2x+ ),則(
A.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
B.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
C.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=5,a2=2,an=2an1+3an2 , (n≥3) (Ⅰ)證明數(shù)列{an﹣3an1}成等比數(shù)列,并求數(shù){an}列的通項(xiàng)公式an
(Ⅱ)若數(shù)列bn= (an+1+an),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一艘海輪從A出發(fā),沿北偏東75°的方向航行(2 ﹣2)nmile到達(dá)海島B,然后從B出發(fā),沿北偏東15°的方向航行4nmile到達(dá)海島C.
(1)求AC的長;
(2)如果下次航行直接從A出發(fā)到達(dá)C,求∠CAB的大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐S﹣ABCD中,側(cè)棱與底面所成的角為α,側(cè)面與底面所成的角為β,側(cè)面等腰三角形的底角為γ,相鄰兩側(cè)面所成的二面角為θ,則α、β、γ、θ的大小關(guān)系是(
A.α<β<γ<θ
B.α<β<θ<γ
C.θ<α<γ<β
D.α<γ<β<θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知an=logn+1(n+2)(n∈N+),觀察下列運(yùn)算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定義使a1a2a3…ak為整數(shù)的k(k∈N+)叫做希望數(shù),則在區(qū)間[1,2016]內(nèi)所有希望數(shù)的和為(
A.1004
B.2026
C.4072
D.22016﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案