如圖,曲線C1是以原點O為中心,以F1、F2為焦點的橢圓的一部分,曲線C2是以O(shè)為頂點,以F2為焦點的拋物線的一部分,A是曲線C1和C2的交點,且∠AF2F1為鈍角,若|AF1|=,|AF2|=

(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;

(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(如圖),若G為CD的中點,H為BE的中點,問是否為定值?若是,求出定值;若不是,請說明理由.

答案:
解析:

  解:(I)設(shè)橢圓方程為,拋物線方程為,如圖,過作垂直于軸的直線,即拋物線準(zhǔn)線的垂線,過A作的垂線垂足為N,作軸于點,

  則由拋物線的定義得

  ,所以,

  ,,

  由,得,,所以橢圓的方程為,拋物線的方程為. 6分

  (II)設(shè),,,由已知得直線的斜率一定存在,故可設(shè)直線的方程為,由,得,得, 7分,同理,由,得,得,, 9分

  

  

  ,為定值. 13分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,曲線C1是以原點O為中心、F1,F(xiàn)2為焦點的橢圓的一部分,曲線C2是以O(shè)為頂點、F2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=
7
2
,|AF2|=
5
2
,
(1)求曲線C1和C2的方程;
(2)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問
|BE|•|GF2|
|CD|•|HF2|
是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,精英家教網(wǎng)曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分,曲線C2是以O(shè)為頂點,F(xiàn)2(1,0)為焦點的拋物線的一部分,A(
3
2
,
6
)
是曲線C1和C2的交點.
(I)求曲線C1和C2所在的橢圓和拋物線的方程;
(II)過F2作一條與x軸不垂直的直線,與曲線C2交于C,D兩點,求△CDF1面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,曲線C1是以原點O為中心、F1,F(xiàn)2為焦點的橢圓的一部分,曲線C2是以O(shè)為頂點、F2為焦點的拋物線的一部分,A是曲線C1和C2的交點,曲線C1的離心率為
1
3
,若|AF1|=
7
2
,|AF2|=
5
2

(Ⅰ)求曲線C1和C2所在的橢圓和拋物線方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問
|BE|•|GF2|
|CD|•|HF2|
是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分.曲線C2是以O(shè)為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=
7
2
,|AF2|=
5
2

(I)求曲線C1和C2的方程;
(II)設(shè)點C是C2上一點,若|CF1|=
2
|CF2|,求△CF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,曲線C1是以原點O為中心,F(xiàn)1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F(xiàn)2為焦點的拋物線的一部分,A(
3
2
,
6
)
是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問
|BE|•|GF2|
|CD|•|HF2|
是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案