【題目】數(shù)列{an}的前n項和為Sn , 且Sn=n(n+1),n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足: ,求數(shù)列{bn}的通項公式;
(3)令 ,求數(shù)列{cn}的前n項和Tn .
【答案】
(1)解:當(dāng)n=1時,a1=S1=2;
當(dāng)n≥2時,an=Sn﹣Sn﹣1=2n,知a1=2滿足該式,
∴數(shù)列{an}的通項公式為an=2n
(2)解: ,①
,②
②﹣①得 , ,
而b1=8,故 (n∈N*)
(3)解:∵ ,
∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n),
令 ,③
則 ,④
③﹣④得, = , ,
∴數(shù)列{cn}的前n項和 .
【解析】(1)根據(jù)Sn=n(n+1),求出a1,由an=Sn﹣Sn﹣1,即可得到通項公式,(2)根據(jù)(1)中的通項公式表示出 a n,an+1,兩項相減即可得出bn的通項公式,(3)根據(jù)(1),(2)中的通項公式寫出cn,通過分組求和和錯位相減即可得出數(shù)列{cn}的前n項和Tn.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項和和數(shù)列的通項公式,需要了解數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,若c(acosB﹣ b)=a2﹣b2 .
(1)求角A;
(2)若a= ,求c﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)﹣f(a)=f′(x0)(b﹣a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點(diǎn)”.那么函數(shù)f(x)=x3﹣3x在區(qū)間[﹣2,2]上的“中值點(diǎn)”為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游公司為甲,乙兩個旅游團(tuán)提供四條不同的旅游線路,每個旅游團(tuán)可任選其中一條旅游線路.
(1)求甲、乙兩個旅游團(tuán)所選旅游線路不同的概率;
(2)某天上午9時至10時,甲,乙兩個旅游團(tuán)都到同一個著名景點(diǎn)游覽,20分鐘后游覽結(jié)束即離去.求兩個旅游團(tuán)在該著名景點(diǎn)相遇的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).
(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點(diǎn),且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),滿足f(x﹣2)=﹣f(x),且當(dāng)x∈[0,1]時,f(x)=x2+x+sinx,若方程f(x)=m(m>0)在區(qū)間[﹣4,4]上有四個不同的根x1 , x2 , x3 , x4 , 則x1+x2+x3+x4的值為( )
A.2
B.﹣2
C.4
D.﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式組 的解集是( )
A.{x|﹣1<x<1}
B.{x|1<x≤3}
C.{x|﹣1<x≤0}
D.{x|x≥3或x<1}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com