某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,所得數(shù)據(jù)如表所示:
x681012
y2356
畫出上表數(shù)據(jù)的散點(diǎn)圖如圖所示
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a

(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)記憶力為9的學(xué)生的判斷力
( 其中
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a
=
.
y
-
b
.
x
考點(diǎn):線性回歸方程
專題:概率與統(tǒng)計(jì)
分析:(1)作出利用最小二乘法來求線性回歸方程的系數(shù)的量,求出橫標(biāo)和縱標(biāo)的平均數(shù),求出系數(shù),再求出a的值.得到回歸直線方程.
(2)由回歸直線方程預(yù)測(cè),記憶力為9的同學(xué)的判斷力約為4.
解答: 解:(1)∵
.
x
=
6+8+10+12
4
=9,
.
y
=
2+3+5+6
4
=4,
4
i=1
xiyi=6×2+8×3+10×5+12×6=158
?
b
=
158-4×9×4
36+64+100+144-4×81
=0.7,
a=4-0.7×9=-2.3
故線性回歸方程為y=0.7x-2.3
(2)由回歸直線方程預(yù)測(cè)y=0.7×9-2.3=4,
記憶力為9的同學(xué)的判斷力約為4.
點(diǎn)評(píng):本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是利用最小二乘法做出線性回歸方程的系數(shù),本題是一個(gè)近幾年可能出現(xiàn)在高考卷中的題目
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為培養(yǎng)高中生綜合實(shí)踐能力和團(tuán)隊(duì)合作意識(shí),某市教育部門主辦了全市高中生綜合實(shí)踐知識(shí)與技能競(jìng)賽.該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,參加決賽的團(tuán)隊(duì)按照抽簽方式?jīng)Q定出場(chǎng)順序.通過預(yù)賽,共選拔出甲、乙等六個(gè)優(yōu)秀團(tuán)隊(duì)參加決賽.
(Ⅰ)求決賽出場(chǎng)的順序中,甲不在第一位、乙不在第六位的概率;
(Ⅱ)若決賽中甲隊(duì)和乙隊(duì)之間間隔的團(tuán)隊(duì)數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:P0eln0.81=81%P0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(實(shí)驗(yàn)班做)某市規(guī)定中學(xué)生百米成績達(dá)標(biāo)標(biāo)準(zhǔn)為不超過16秒.現(xiàn)從該市中學(xué)生中按照男、女生比例隨機(jī)抽取了50人,其中有30人達(dá)標(biāo).將此樣本的頻率估計(jì)為總體的概率.
(1)隨機(jī)調(diào)查45名學(xué)生,設(shè)ξ為達(dá)標(biāo)人數(shù),求ξ的數(shù)學(xué)期望與方差.
(2)如果男、女生采用相同的達(dá)標(biāo)標(biāo)準(zhǔn),男、女生達(dá)標(biāo)情況如下表:
總計(jì)
達(dá)標(biāo)a=24 b=
 
 
不達(dá)標(biāo)c=
 
d=12
 
總計(jì)
 
 
n=50
根據(jù)表中所給的數(shù)據(jù),完成2×2列聯(lián)表(注:請(qǐng)將答案填到答題卡上),并判斷在犯錯(cuò)誤的概率不超過0.01的前提下能否認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否給出一個(gè)更合理的達(dá)標(biāo)方案?
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
P(K2≥k00.0250.010.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,其前n項(xiàng)和Sn滿足Sn+1-Sn=2n+1(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式an以及前n和Sn
(2)令bn=2log2an+1.求數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3-bx+2,且f(t)=1,求f(-t)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x+2x+1,x∈[-1,1],求f(x)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;    
(2)判斷f(x)的奇偶性并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-2x-3=0},B={x|ax-2=0}滿足A∩B=B,求實(shí)數(shù)a組成的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案