【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,,平面ABCD

BE與平面EAC所成角的正弦值;

線段BE上是否存在點(diǎn)M,使平面平面DFM?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)見(jiàn)解析

【解析】

C為原點(diǎn),CDx軸,CBy軸,CFz軸,建立空間直角坐標(biāo)系,求出平面EAC的法向量,利用向量法能求出BE與平面EAC所成角的正弦值.

設(shè)線段BE上存在點(diǎn)b,,,使平面平面DFM,求出平面DMF的法向量和平面EAC的法向量,利用向量法求出線段BE上不存在點(diǎn)M,使平面平面DFM

四邊形CDEF為正方形,四邊形ABCD為梯形,,平面ABCD

C為原點(diǎn),CDx軸,CBy軸,

CFz軸,建立空間直角坐標(biāo)系,

設(shè),則1,

0,1,

0,0,,

,1,,

0,,

設(shè)平面EAC的法向量y,

,取,

設(shè)BE與平面EAC所成角為,

與平面EAC所成角的正弦值為

線段BE上不存在點(diǎn)M,使平面平面DFM

理由如下:

設(shè)線段BE上存在點(diǎn)b,,,使平面平面DFM

,,,0,

設(shè)平面DMF的法向量y,,

,取,得,

平面平面DFM,平面EAC的法向量,

,解得

線段BE上不存在點(diǎn)M,使平面平面DFM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)

(1)求燈柱AB的高h(用表示);

(2)此公司應(yīng)該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長(zhǎng)度最。孔钚≈禐槎嗌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列四個(gè)命題中,錯(cuò)誤的有(

A.坐標(biāo)平面內(nèi)的任何一條直線均有傾斜角和斜率

B.直線的傾斜角的取值范圍是

C.若一條直線的斜率為,則此直線的傾斜角為

D.若一條直線的傾斜角為,則此直線的斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國(guó)標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為優(yōu);在之間空氣質(zhì)量為良;在之間空氣質(zhì)量為輕度污染.某市環(huán)保局從該市2018年上半年每天的日均值數(shù)據(jù)中隨機(jī)抽取20天的數(shù)據(jù)作為樣本,將日均值統(tǒng)計(jì)如下

日均值(

天數(shù)

4

6

5

3

2

(1)在空氣質(zhì)量為輕度污染的數(shù)據(jù)中,隨機(jī)抽取兩天日均值數(shù)據(jù),求其中恰有一天日均值數(shù)據(jù)在之間的概率;

(2)將以上樣本數(shù)據(jù)繪制成頻率分布直方圖(直接作圖):

(3)該市規(guī)定:全年日均值的平均數(shù)不高于,則認(rèn)定該市當(dāng)年的空氣質(zhì)量達(dá)標(biāo).現(xiàn)以這20天的日均值的平均數(shù)來(lái)估計(jì)2018年的空氣質(zhì)量情況,試預(yù)測(cè)該市2018年的空氣質(zhì)量是否達(dá)標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地上年度電價(jià)為元,年用電量為億千瓦時(shí).本年度計(jì)劃將電價(jià)調(diào)至之間,經(jīng)測(cè)算,若電價(jià)調(diào)至元,則本年度新增用電量(億千瓦時(shí))與元成反比例.又當(dāng)時(shí),.

1)求之間的函數(shù)關(guān)系式;

2)若每千瓦時(shí)電的成本價(jià)為元,則電價(jià)調(diào)至多少時(shí),本年度電力部門(mén)的收益將比上年增加[收益=用電量×(實(shí)際電價(jià)-成本價(jià))]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)團(tuán)委組織了紀(jì)念抗日戰(zhàn)爭(zhēng)勝利73周年的知識(shí)競(jìng)賽,從參加競(jìng)賽的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段,,后,畫(huà)出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問(wèn)題:

1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

2)估計(jì)這次競(jìng)賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某公司舉行的年終慶典活動(dòng)中,主持人利用隨機(jī)抽獎(jiǎng)軟件進(jìn)行抽獎(jiǎng):由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎(jiǎng)300元,4格各設(shè)獎(jiǎng)200元,其余4格各設(shè)獎(jiǎng)100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎(jiǎng)的總金額為X元.

1)求概率

2)求的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),共享單車的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車公司Mobike計(jì)劃在甲、乙兩座城市共投資160萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資30萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入單位:萬(wàn)元滿足,乙城市收益Q與投入單位:萬(wàn)元滿足,設(shè)甲城市的投入為單位:萬(wàn)元,兩個(gè)城市的總收益為單位:萬(wàn)元

1)寫(xiě)出兩個(gè)城市的總收益萬(wàn)元關(guān)于甲城市的投入萬(wàn)元的函數(shù)解析式,并求出當(dāng)甲城市投資72萬(wàn)元時(shí)公司的總收益;

2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們學(xué)校是一所有著悠久傳統(tǒng)文化的學(xué)校,我們學(xué)校全名叫重慶外國(guó)語(yǔ)學(xué)校(Chongqing Foreign Language School),又名四川外國(guó)語(yǔ)大學(xué)附屬外國(guó)語(yǔ)學(xué)校,簡(jiǎn)稱重外,1981年,被定為四川省首批辦好的重點(diǎn)中學(xué);1997年,被列為重慶市教委首批辦好的直屬重點(diǎn)中學(xué)之一;2001年被國(guó)家教育部指定為20%高三學(xué)生享有保送資格的全國(guó)十三所學(xué)校之一,今年我校保送取得了非常輝煌的成績(jī),目前為止,包括清華大學(xué),北京大學(xué)在內(nèi)目前共保送122名同學(xué),其中北京大學(xué),南開(kāi)大學(xué),北京外國(guó)語(yǔ)大學(xué)保送的人數(shù)成公差為正數(shù)的等差數(shù)列,三個(gè)學(xué)校保送人數(shù)之和為24人,三個(gè)學(xué)校保送學(xué)生人數(shù)之積為312,則北京外國(guó)語(yǔ)大學(xué)保送的人數(shù)為(以上數(shù)據(jù)均來(lái)自于學(xué)校官網(wǎng))(

A.10B.11C.13D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案