【題目】解下列各題:
(1)求下列橢圓5x2+9y2=100的焦點(diǎn)和頂點(diǎn)的坐標(biāo);
(2)求拋物線 y2﹣6x=0的焦點(diǎn)坐標(biāo),準(zhǔn)線方程和對(duì)稱軸;
(3)求焦點(diǎn)在x軸上,兩頂點(diǎn)間的距離是8,e= 的 雙曲線的標(biāo)準(zhǔn)方程.

【答案】
(1)解:由橢圓5x2+9y2=100,得 ,

,

∴橢圓5x2+9y2=100的焦點(diǎn)為(± ),頂點(diǎn)坐標(biāo)分別為(±2 ,0),(0,±


(2)解:由拋物線 y2﹣6x=0,得y2=6x,則p=3,

拋物線的焦點(diǎn)坐標(biāo)為F( ),準(zhǔn)線方程為x=﹣ ,對(duì)稱軸方程為y=0


(3)解:由題意可設(shè)雙曲線方程為 ,且2a=8, ,

∴a=4,c=5,b2=c2﹣a2=9,則雙曲線的標(biāo)準(zhǔn)方程為


【解析】(1)化橢圓方程為標(biāo)準(zhǔn)方程,即可求得焦點(diǎn)和頂點(diǎn)的坐標(biāo);(2)化拋物線方程為標(biāo)準(zhǔn)方程,求得p,即可求得焦點(diǎn)坐標(biāo),準(zhǔn)線方程和對(duì)稱軸;(3)由題意設(shè)出雙曲線的標(biāo)準(zhǔn)方程,進(jìn)一步求得a,b得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大;
(2)若a=3,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長(zhǎng)AC為8米.該廣告畫最高點(diǎn)E到地面的距離為10.5米.最低點(diǎn)D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點(diǎn)M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,AD上,AE=AF=4,現(xiàn)將△AEF沿線段EF折起到△A′EF位置,使得A′C=2

(1)求五棱錐A′﹣BCDFE的體積;
(2)求平面A′EF與平面A′BC的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=n2﹣4n,數(shù)列{bn}中,b1= 對(duì)任意正整數(shù)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)μ,使得數(shù)列{3nbn+μ}是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)μ及公比q的值,若不存在,請(qǐng)說(shuō)明理由;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌汽車4s店對(duì)最近100位采用分期付款的購(gòu)車者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示:

付款方式

分1期

分2期

分3期

分4期

分5期

頻數(shù)

40

20

a

10

b

已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤(rùn)為1萬(wàn)元,分2期或3期付款其利潤(rùn)為1.5萬(wàn)元,分4期或5期付款,其利潤(rùn)為2萬(wàn)元,用Y表示經(jīng)銷一輛汽車的利潤(rùn).

1求上表中a,b的值.

2若以頻率作為概率,求事件A購(gòu)買該品牌汽車的3位顧客中,至多有一位采用3期付款的概率PA

3Y的分布列及數(shù)學(xué)期望EY.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,摩天輪的半徑OA,它的最低點(diǎn)A距地面的高度忽略不計(jì).地面上有一長(zhǎng)度為的景觀帶MN,它與摩天輪在同一豎直平面內(nèi),.點(diǎn)P從最低點(diǎn)A處按逆時(shí)針方向轉(zhuǎn)動(dòng)到最高點(diǎn)B,.

()當(dāng)時(shí),求點(diǎn)P距地面的高度PQ;

()設(shè),寫出用表示y的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某港灣的平面示意圖如圖所示, , 分別是海岸線上的三個(gè)集鎮(zhèn), 位于的正南方向6km處, 位于的北偏東方向10km處.

(Ⅰ)求集鎮(zhèn), 間的距離;

(Ⅱ)隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上航線.勘測(cè)時(shí)發(fā)現(xiàn):以為圓心,3km為半徑的扇形區(qū)域?yàn)闇\水區(qū),不適宜船只航行.請(qǐng)確定碼頭的位置,使得之間的直線航線最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為Tn , 問(wèn)使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案