【題目】已知橢圓:的長(zhǎng)軸長(zhǎng)為4,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)的動(dòng)直線與橢圓相交于不同的兩點(diǎn)(不與點(diǎn)重合).
(1)求橢圓的方程及離心率;
(2)求四邊形面積的最大值;
(3)若直線與直線相交于點(diǎn),判斷點(diǎn)是否位于一條定直線上?若是,寫出該直線的方程. (結(jié)論不要求證明)
【答案】(Ⅰ) ,離心率 (Ⅱ) (Ⅲ)
【解析】
(Ⅰ)由題意可知:m=1,可得橢圓方程,根據(jù)離心率公式即可求出
(Ⅱ)設(shè)直線CD的方程,代入橢圓方程,根據(jù)韋達(dá)定理,由SACBD=S△ACB+S△ADB,換元,根據(jù)函數(shù)的單調(diào)性即可求得四邊形ACBD面積的最大值.
(Ⅲ)點(diǎn)M在一條定直線上,且該直線的方程為x=4
(Ⅰ)由題意,得 , 解得.
所以橢圓方程為.
故,,.
所以橢圓的離心率.
(Ⅱ)當(dāng)直線的斜率不存在時(shí),由題意,得的方程為,
代入橢圓的方程,得,,
又因?yàn)?/span>,,
所以四邊形的面積.
當(dāng)直線的斜率存在時(shí),設(shè)的方程為,,,
聯(lián)立方程 消去,得.
由題意,可知恒成立,則,
四邊形的面積
,
設(shè),則四邊形的面積,,
所以.
綜上,四邊形面積的最大值為.
(Ⅲ)結(jié)論:點(diǎn)在一條定直線上,且該直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個(gè)單位長(zhǎng)度得到曲線.
(1)求曲線的參數(shù)方程;
(2)已知為曲線上的動(dòng)點(diǎn), 兩點(diǎn)的極坐標(biāo)分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)若對(duì)任意的實(shí)數(shù)x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,則實(shí)數(shù)m的取值范圍是( )
A.[1,4)B.(1,4)C.()D.[]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障某種藥品的主要藥理成分在國(guó)家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過程中,檢驗(yàn)員在一天中按照規(guī)定每間隔2小時(shí)對(duì)該藥品進(jìn)行檢測(cè),每天檢測(cè)4次:每次檢測(cè)由檢驗(yàn)員從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測(cè),測(cè)量其主要藥理成分含量(單位:mg).根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求(精確到0.001)及的數(shù)學(xué)期望;
(2)在一天內(nèi)四次檢測(cè)中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)本次的生產(chǎn)過程進(jìn)行檢查;如果在一天中,有連續(xù)兩次檢測(cè)出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè).
①下面是檢驗(yàn)員在某一次抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 10.04 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 9.95 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計(jì)算得,.其中為抽取的第件藥品的主要藥理成分含量,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)本次的生產(chǎn)過程進(jìn)行檢查?
②試確定一天中需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè)的概率(精確到0.001).附:若隨機(jī)變量Z服從正態(tài)分布,則,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3(a2+a+2)x2+a2(a+2)x,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)y=f(x)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2是橢圓C:的左、右焦點(diǎn),點(diǎn)在橢圓C上,且滿足.
(1)求橢圓C的方程;
(2)直線l:交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)M(t,0),求mt的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,FA為半徑的圓F交l于M.N點(diǎn).
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)y=f(x)圖象的對(duì)稱軸和對(duì)稱中心;
(Ⅱ)若函數(shù),的零點(diǎn)為x1,x2,求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 .
(1)若是上的增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com