4.已知變量x,y滿足$\left\{{\begin{array}{l}{x+2y-4≤0}\\{x≥1}\\{y≥0}\end{array}}\right.$,則z=-2x+y的最大值是( 。
A.2B.$-\frac{1}{2}$C.-2D.-8

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.

解答 解:作出不等式組$\left\{{\begin{array}{l}{x+2y-4≤0}\\{x≥1}\\{y≥0}\end{array}}\right.$對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=-2x+y得y=2x+z,
平移直線y=2x+z,
由圖象可知當(dāng)直線y=2x+z經(jīng)過點A時,直線y=2x+z的截距最大
此時z最大.
由$\left\{\begin{array}{l}{x=1}\\{x+2y-4=0}\end{array}\right.$,解得A(1,$\frac{3}{2}$)
將A的坐標(biāo)代入目標(biāo)函數(shù)z=-2x+y,
得z=-2×1+$\frac{3}{2}$=6.即z=-2x+y的最大值為$-\frac{1}{2}$.
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面直角坐標(biāo)系xOy中,不等式組$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y-1≤0}\\{x≥-1}\end{array}\right.$表示的平面區(qū)域的面積為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$sinα=-\frac{1}{2}$,P(2,y)是角α終邊上一點,則y=( 。
A.-1B.$\frac{{2\sqrt{3}}}{3}$C.$-\frac{{2\sqrt{3}}}{3}$D.$±\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題:“?x0∈R,$x_0^2-1>0$”的否定為( 。
A.?x∈R,$x_{\;}^2-1≤0$B.?x∈R,$x_{\;}^2-1≤0$C.?x∈R,$x_{\;}^2-1<0$D.?x∈R,$x_{\;}^2-1<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.B是單位圓O上的點,點A(1,0),點B在第二象限.記∠AOB=θ且sinθ=$\frac{4}{5}$.
(1)求B點坐標(biāo);
(2)求$\frac{sin(π+θ)+2sin(\frac{π}{2}-θ)}{2cos(π-θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.甲、乙兩名同學(xué)在5次數(shù)學(xué)考試后,用莖葉圖統(tǒng)計成績?nèi)鐖D所示,則甲、乙的平均成績之差$\overline{x_甲}-\overline{x_乙}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$cosα=-\frac{3}{5}$,并且α是第二象限角,則tanα的值為( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否做到“光盤”行動,得到如下列聯(lián)表及附表:
經(jīng)計算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
做不到“光盤”行動做到“光盤”行動
4510
3015
P(X2≥x00.100.050.025
x02.7063.8415.024
參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過1%的前提下,認(rèn)為“該市民能否做到‘光盤’行動與性別有關(guān)”
B.在犯錯誤的概率不超過1%的前提下,認(rèn)為“該市民能否做到‘光盤’行動與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市民能否做到‘光盤’行動與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市民能否做到‘光盤’行動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-2x,g(x)=ax-1,若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案