11.在等差數(shù)列{an}中,a1+a2+a3=-24,a10+a11+a12=78,則此數(shù)列前12項(xiàng)和等于( 。
A.96B.108C.204D.216

分析 由題意和等差數(shù)列的性質(zhì)求出a2、a11,由等差數(shù)列的前n項(xiàng)和公式求出此數(shù)列前12項(xiàng)和.

解答 解:∵在等差數(shù)列{an}中,a1+a2+a3=-24,a10+a11+a12=78,
∴3a2=-24,3a11=78,解得a2=-8,a11=26,
∴此數(shù)列前12項(xiàng)和${S}_{12}=\frac{12({a}_{1}+{a}_{12})}{2}$=$\frac{12({a}_{2}+{a}_{11})}{2}$
=6×18=108,
故選B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和公式,以及等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A中含4個(gè)元素,B中含3個(gè)元素,則從A到B的映射有( 。﹤(gè).
A.43B.34C.12D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)是奇函數(shù)的是( 。
A.y=xB.y=2x2-3C.y=$\sqrt{x}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=f(x)的圖象過點(diǎn)(1,6),且當(dāng)x=-1時(shí),函數(shù)有最小值為2,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(x,2,-1)、B(6,4,1),且|AB|=2$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{9-{3}^{x}}$
(1)求f(x)的定義域和值域;
(2)若f(x)>$\frac{\sqrt{5}}{4}$•3x,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線y2=4ax的準(zhǔn)線方程是x=-2,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+(y-1)2=5,直線l過定點(diǎn)P(1,1).
(1)求圓心C到直線l距離最大時(shí)的直線l的方程;
(2)若l與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若l與圓C交與不同兩點(diǎn)A、B,點(diǎn)P分弦AB為$\frac{AP}{PB}=\frac{1}{2}$,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知某小學(xué)有90名三年級(jí)學(xué)生,將全體三年級(jí)學(xué)生隨機(jī)按00~89編號(hào),并且編號(hào)順序平均分成9組,現(xiàn)要從中抽取9名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加10進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個(gè)號(hào)碼為30,則此號(hào)碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;
(2)分別統(tǒng)計(jì)這9名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)數(shù)據(jù)的莖葉圖如圖所示,從這9名學(xué)生中隨機(jī)抽取兩名成績(jī)不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績(jī)之和不小于154分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案