已知定義在(-1,1)上的奇函數(shù)f(x)為減函數(shù),且f(1-a)+f(2a)<0,則a的取值范圍(  )
分析:根據(jù)函數(shù)的奇偶性、單調(diào)性去掉不等式中的符號(hào)“f”,轉(zhuǎn)化為具體不等式即可解得,注意函數(shù)的定義域.
解答:解:因?yàn)閒(x)為奇函數(shù),所以f(1-a)+f(2a)<0可化為f(2a)<-f(1-a)=f(a-1),
又f(x)為(-1,1)上的減函數(shù),所以有
2a>a-1
-1<2a<1
-1<a-1<1
,解得0<a<
1
2

所以a的取值范圍為(0,
1
2
).
故選D.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性的綜合應(yīng)用,考查抽象不等式的求解,解決本題的關(guān)鍵是綜合運(yùn)用函數(shù)性質(zhì)把抽象不等式化為具體不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:蚌埠二中2008屆高三12月份月考數(shù)學(xué)試題(理) 題型:044

已知定義在實(shí)數(shù)集合R上的奇函數(shù)f(x)有最小正周期為2,且當(dāng)x∈(0,1)時(shí),

(1)求函f(x)在[-1,1]上的解析式;

(2)判斷f(x)在(0,1)上的單調(diào)性;

(3)當(dāng)λ取何值時(shí),方程f(x)=λ在[-1,1]上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濟(jì)南市2012屆高三上學(xué)期12月月考數(shù)學(xué)試題 題型:044

已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)有最小正周期2,且當(dāng)x∈(0,1)時(shí),f(x)=

(Ⅰ)求函數(shù)f(x)在(-1,1)上的解析式;

(Ⅱ)判斷f(x)在(0,1)上的單調(diào)性;

(Ⅲ)當(dāng)λ取何值時(shí),方程f(x)=λ在(-1,1)上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省五校協(xié)作體高二(上)聯(lián)合競(jìng)賽數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實(shí)數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結(jié)論.
(3)f(x)在x∈[m,n]上的值域?yàn)閇m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省贛州市會(huì)昌中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實(shí)數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結(jié)論.
(3)f(x)在x∈[m,n]上的值域?yàn)閇m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市白鷺洲中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實(shí)數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結(jié)論.
(3)f(x)在x∈[m,n]上的值域?yàn)閇m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案