11.已知冪函數(shù)f(x)=k•xa的圖象過(guò)點(diǎn)(3,$\sqrt{3}$),則k+a=$\frac{3}{2}$.

分析 根據(jù)冪函數(shù)的定義,以及函數(shù)值,即可求出.

解答 解:冪函數(shù)f(x)=k•xa的圖象過(guò)點(diǎn)(3,$\sqrt{3}$),
∴k=1,$\sqrt{3}$=3a,
∴a=$\frac{1}{2}$,
∴k+a=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查求冪函數(shù)的解析式、對(duì)冪函數(shù)求值,屬基本運(yùn)算的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在平面直角坐標(biāo)系xOy中,圓C的方程為(x-2)2+(y-3)2=36,直線l:y=kx+5與圓C相交于A,B兩點(diǎn),M為弦AB上一動(dòng)點(diǎn),以M為圓心,4為半徑的圓與圓C總有公共點(diǎn),則實(shí)數(shù)k的最小值為( 。
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.給出下列結(jié)論:
①在△ABC中,sinA>sinB?a>b;
②常數(shù)數(shù)列既是等差數(shù)列又是等比數(shù)列;
③數(shù)列{an}的通項(xiàng)公式為${a_n}={n^2}-kn+1$,若{an}為遞增數(shù)列,則k∈(-∞,2];
④△ABC的內(nèi)角A,B,C滿足sinA:sinB:sinC=3:5:7,則△ABC為銳角三角形.其中正確結(jié)論的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知盒中有3張分別標(biāo)有1,2,3的卡片,從中隨機(jī)地抽取一張,記下數(shù)字后再放回,再隨機(jī)地抽取一張,記下數(shù)字,則兩次抽得的數(shù)字之和為3的倍數(shù)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC 中,角A,B,C 所對(duì)的邊分別為a,b,c,已知bsinA=$\sqrt{3}$acosB.
(1)求角B 的值;
(2)若cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,求角A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=4$\sqrt{x+1}$-x的值域?yàn)椋?∞,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)f(x)=ax2+bx+3在x=2時(shí)取得最小值,且函數(shù)f(x)的圖象在x軸上截得的線段長(zhǎng)為2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)-mx的一個(gè)零點(diǎn)在區(qū)間(0,2)上,另一個(gè)零點(diǎn)在區(qū)間(2,3)上,求實(shí)數(shù)m的取值范圍.
(3)當(dāng)x∈[t,t+1]時(shí),函數(shù)f(x)的最小值為-$\frac{1}{2}$,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某校高一年級(jí)3個(gè)班有10名學(xué)生在全國(guó)英語(yǔ)能力大賽中獲獎(jiǎng),學(xué)生來(lái)源人數(shù)如表:
班別高一(1)班高一(2)班高一(3)班
人數(shù)361
若要求從10位同學(xué)中選出兩位同學(xué)介紹學(xué)習(xí)經(jīng)驗(yàn),設(shè)其中來(lái)自高一(1)班的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若$\frac{cosA}{cosB}=\frac{a}$,則△ABC的形狀是( 。
A.等腰三角形B.鈍角三角形
C.直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案