(12分)已知定義域為的偶函數(shù).
(1)求實數(shù)的值;
(2)判斷并證明的單調(diào)性;
(3)若對任意恒成立,求實數(shù)的取值范圍.

(1);
(2)設(shè),則
時,上的增函數(shù);當時,上的減函數(shù)。(3)。

解析試題分析:(1)
          …… ……………………………………………3分
⑵設(shè)




時,,上的增函數(shù);
時,,上的增函數(shù)。
綜上可得,當時,上的增函數(shù)。
同理可證,當時,上的減函數(shù)。   ………………7分
對任意恒成立,
對任意恒成立,
對任意恒成立,
對任意恒成立
對任意恒成立,(令
                         ……………………………………12分
考點:函數(shù)的奇偶性;函數(shù)的單調(diào)性;函數(shù)性質(zhì)的綜合應(yīng)用。
點評:用定義法證明函數(shù)單調(diào)性的步驟:一設(shè)二作差三變形四判斷符號五得出結(jié)論,其中最重要的是四變形,最好變成幾個因式乘積的形式,這樣便于判斷符號。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知是定義在上的奇函數(shù),且當時,
(Ⅰ)求的解析式;
(Ⅱ)直接寫出的單調(diào)區(qū)間(不需給出演算步驟);
(Ⅲ)求不等式解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)若,求a的值;
(2)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間與極值點;
(3)設(shè)函數(shù)是偶函數(shù),若過點A(1,m)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在實數(shù)集上的奇函數(shù)、)過已知點
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)試證明函數(shù)在區(qū)間是增函數(shù);若函數(shù)在區(qū)間(其中)也是增函數(shù),求的最小值;
(Ⅲ)試討論這個函數(shù)的單調(diào)性,并求它的最大值、最小值,在給出的坐標系(見答題卡)中畫出能體現(xiàn)主要特征的圖簡;
(Ⅳ)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分8分)已知函數(shù).
(1)求證:函數(shù)上為增函數(shù);
(2)當函數(shù)為奇函數(shù)時,求的值;
(3)當函數(shù)為奇函數(shù)時, 求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當x>0時,證明不等式:<ln(x+1)<x;
(3)設(shè)f(x)的最小值為g(a),證明不等式:-1<ag(a)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù),
(1)作出的圖像;
(2)求滿足的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點;
(3)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知函數(shù)的一系列對應(yīng)值如下表:

















(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,求在區(qū)間上的最大、最小值及對應(yīng)的的值.

查看答案和解析>>

同步練習冊答案