(18)設(shè)函數(shù),求的單調(diào)區(qū)間,并證明在其單調(diào)區(qū)間上的單調(diào)性.

(18)本小題主要考查函數(shù)的基本性質(zhì),考查推理能力.

解:函數(shù)的定義域為

內(nèi)是減函數(shù)內(nèi)也是減函數(shù). 

證明內(nèi)是減函數(shù).

,且,那么

     

                    ,                

∵    ,

∴   

內(nèi)是減函數(shù).                          

同理可證內(nèi)是減函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx滿足條件:①f(0)=f(1);②f(x)的最小值為-
1
8

(1)求函數(shù)f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項積為Tn,且Tn=(
4
5
)f(n)
,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,求數(shù)列{nan}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,點A、B的坐標(biāo)分別為(x1,f(x1)),(x2f(x2))且M(x,f(x))為圖象C上的任意一點,O為坐標(biāo)原點,當(dāng)實數(shù)λ滿足x=λx1+(1-λ)x2時,記向量
ON
OA
+(1-λ)
OB
.若|
MN
|≤k
恒成立,則稱函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標(biāo)準k下線性近似,其中k是一個確定的正數(shù).
(Ⅰ)求證:A、B、N三點共線
(Ⅱ)設(shè)函數(shù)f(x)=x2在區(qū)間[0,1]上可的標(biāo)準k下線性近似,求k的取值范圍;
(Ⅲ)求證:函數(shù)g(x)=lnx在區(qū)間(em,em+1)(m∈R)上可在標(biāo)準k=
1
8
下線性近似.
(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津市高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分18分)已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若在)上存在一點,使得成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市十三校高三上學(xué)期第一次聯(lián)考試題文科數(shù)學(xué) 題型:解答題

  (本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)

已知函數(shù),其中.

(1)當(dāng)時,設(shè),,求的解析式及定義域;

(2)當(dāng),時,求的最小值;

(3)設(shè),當(dāng)時,對任意恒成立,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案